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ABSTRACT

A method is presented to integrate the design space of structural/control

system optimization problems in the case of linear state feedback control. Con-

ventional structural sizing variables and elements of the feedback gain matrix are

both treated as strictly independent design variables in optimization by extending

design variable linking concepts to the control gains. Several approximation

concepts including new control design variable linking schemes are used to for-

mulate the integrated structural/control optimization problem as a sequence of

explicit nonlinear mathematical programming problems. Examples which involve

a variety of behavior constraints, including constraints on dynamic stability,

damped frequencies, control effort, peak transient displacement, acceleration and

control force limits, are effectively solved by using the method presented.
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Chapter I

INTRODUCTION

1.1 INTRODUCTION

Large space structures usually have low stiffness and low damping char-

acteristics due to their light weight requirements. In order to suppress the vi-

bration and maintain the strict shape specifications, it is necessary to enhance

stiffness and/or damping of the structures through some type of active controls

(Ref. I).

Conventionally structural and controller design is performed separately

(namely, the structure is designed first to minimize the weight satisfying

structural constraints and then a control law is found for the fixed structure

minimizing some kind of control performance index), and as a result the final

design cannot ensure the best performance of the overall system since the dy-

namic interaction between the two systems is not directly considered in the

design process. In Ref. 2 it was shown that slight structural modification can

lead to considerable improvement in the control system performance, and there

has been a growing effort to integrate the design optimization of structures and

control systems in order to achieve a better performance and directly handle

cross coupling effects and dynamic interactions between the two systems.



Most of this researchhas focusedon linear control laws basedon output

feedback or statefeedback. In the caseof output feedbackseveralstudieshave

been made where the structural dimensionsand the control gains are treated

as strictly independent design variables in optimization (Refs. 2-10). On the

other hand, in the caseof full state feedback control a sequential approach is

usually adopted in which the control gains are determined by solving Riccati

equations corresponding to the changing structural systemduring design iter-

ations (Refs. 11-17). When the gain variables are determined by solving

Riccati equations for a fixed plant, they implicitly becomedependent design

variables and the resulting designoptimization is constrained to a subspace

where the optimality conditions of a control subproblem are satisfied. The

tendency to subordinate gainsto a dependentvariable status can beattributed

to the fact that for system modelswith a large number of degreesof freedom,

the gain matrix [H] contains prohibitively large numbers of independent de-

sign variables (i.e. M × 2N control design variables, where M is the number of

actuators and N is the number of degrees of freedom in the structural model).

The main purpose of this study is to suggest a new simultaneous opti-

mization method where both structural and control system variables are

trcated as strictly independent design variables in the case of state feedback

control. This is accomplished via an adaptation of the design variable linking

idea to the control system design variables (see Refs. 26 and 27). This inno-

vation makes it possible to simultaneously optimize the structure/control sys-

2



tem, while avoiding a prohibitively large

indepen.dent design variables.

increase in the total number of

1.2 BACKGROUND

In Refs. 2-10 both structural and control variables are treated as inde-

pendent in optimization. Output feedback is adopted as a control law so the

number of elements in the feedback gain matrix is relatively small. As a result

the gain elements along with structural design variables can be directly treated

as independent design variables.

In Ref. 2 collocated direct velocity output feedback, which is similar to a

viscous dashpot, is used as a controller. The viscous damping coefficient is

minimized, with constraints on the closed-loop eigenvalues, by allowing small

changes of the structural dimensions.

In Refs. 3-5 in addition to structural dimensions and control gains,

sensor/actuator locations are also used as design variables. Homotopy and se-

quential linear programming algorithms are used to optimize either structural

mass, robustness or eigenvalue sensitivity. Also in Ref. 3 the state feedback

control case is cast into a similar simultaneous optimization form by using el-

ements of weighting matrices of the LQR (linear quadratic regulator) as inde-

pendent design variables, but only the output feedback case is illustrated by

giving a numerical example.



In Refs. 6 and 7 collocated output feedback is chosen as a controller to

optimize a control augmented structure. In addition to the structural sizing

variables and control feedback gains, lumped nonstructural masses are treated

simultaneously as independent design variables. Harmonic dynamic loadings

are applied and a variety of constraints are considered including natural fre-

quencies, static displacement and stress, dynamic displacements and actuator

forces. Due to the characteristics of the collocated sensor/actuator pairs, sys-

tem stability can be ensured by imposing side constraints on the control gains.

In Refs. 8 and 9 noncollocated output feedback is chosen instead of

collocated sensor/actuator pairs, and constraints on the stability (real parts of

closed-loop eigenvalues) are included.

In Ref. 10 several output feedback control laws are used in the case of

stochastic disturbances with constraints on the allowable mean square de-

flection or control effort.

In Refs. 1 !-25 LQR theory is used for the case of state feedback control.

In the LQR problem once the weighting matrices in the quadratic performance

index are chosen, the control law (or all the closed-loop characteristics) is de-

termined by solving a nonlinear matrix Riccati equation. So the choice of

weighting matrices in the LQR problem is very important and two problems

arise. One is how to select meaningful weighting matrices, and the other is the

solution of the Riccati equation for problems involving a large number of de-

grees of freedom.



In Ref. 12structural massis minimized using structural designvariables

while satisfying open-loop frequency constraints and then the LQR problem

is solved for the fixed structure with given weighting matrices. Here weighting

matrices are chosensuch that the quadratic performance index representsthe

absolute weighted sum of kinetic, strain and potential energies,and the effect

of relative weighting of theseenergy terms is discussed. In Refs. 11 and 13

structural variables are optimized with constraints on the closed-loop

eigenvalue and modal damping ratios, then the LQR problem is solvedfor the

fixed structure with given weighting matrices (identity matrices in this case).

In Refs. 14-17the Frobenious norm of the gain matrix is introduced as either

an objective or a constraint.

Refence 20 points out the difficulties of simultaneous structural/control

design and suggests optimization of the closed-loop system using only struc-

tural tailoring. In this case the objective of structural tailoring is to maximize

modal stiffness in order to minimize control effort. The control law is deter-

mined by solving the Riccati equation and the weighting matrices for the LQR

problem are similar to those in Ref. 12 except that only two independent

weighting coefficients are used instead of three.

In Ref. 21 the weighted sum of the structural mass and control system

performance index is minimized.



Reference 22 treats structural variables as well as coefficients of the

weighting matrices and orientation of an actuator as design variables. Nu-

merical results areshown for a two bar truss example.

In ReL 23 a nestedoptimization method is presented for the state feed-

back control which minimizes the total equivalent massof the system (struc-

tural mass plus the mass effect of the control effort). Structural dimensions

and the coefficient of the control effort are optimized simultaneously to mini-

mized the objective with a constraint on the mean square of the response.

Then the control law is determined by solving the Riccati equation with a new

set of weighting matrices (sincethe coefficient of the control effort is optimized,

the performance index is updated for each iteration).

In Refs. 24 and 25 locations of actuators and sensorsare treated in terms

of (0,1) discrete variables. A utopian multiobjective function containing

structural mass,control effort and number of actuators is minimized by treat-

ing structural variables, (0,1) actuator/sensor location variables and open-loop

gains as independent designvariables in optimization.

1.3 SCOPE OF THE WORK

In this study the finite element method and linear state feedback are

combined to formulate the control augmented structural optimization problem.

A truly simultaneous structural/control optimization scheme is presented in the

sense that it uses only one set of constraints and one set of design variables



(which includes structural sizing, control gain and actuator mass variables).

As mentioned earlier, this scheme was usually adopted for the output feedback

control case where the number of gains is relatively small, but by extending

design variable linking concepts to the control system gains, design space inte-

gration is achieved for the case of full state feedback control while using a rel-

atively small number of control system design variables. Several control design

variable linking schemes are presented and their feasibility and effectiveness

are shown by solving several examples.

7



Chapter II

PROBLEM STATEMENTS

2.1 INTRODUCTION

In this study a new simultaneous approach to the design of both the

structural and the control system is presented. The finite element method is

used to model the structure and linear full state feedback control is chosen as

the control law. Dynamic analysis equations from the finite element model

and the equations of the control system are combined and the design problem

is formulated as a general nonlinear inequality constrained mathematical pro-

gramming problem.

2.2 PROBLEM FORMULATION

The total mass of the systems has been chosen as the objective function

and constraints on: (1) dynamic stability (real parts of complex eigenvalues

or modal damping ratios); (2) damped frequencies (imaginary parts of complex

eigenvalues); (3) peak transient responses; (4) peak transient control forces; (5)

control effort; and (6) actutor mass constraints are included in this study. The

optimization problem treated here can be stated as follows:

Design a control augmented structural system which minimizes the total

mass and satisfies various behavior constraints as well as side constraints on



the designvariables, while treating both structural and control designvariables

simultaneously and independently in the optimization loop.

In this problem there are three types of design variables. First group

contains the usual structural design variables (SDV's) such as the cross sec-

tional dimensions (CSD's). The secondgroup includes nonstructural lumped

massdesign variables such as actuator masses. And finally the third group

contains the control design variables (CDV's). Since linear state feedback is

chosen,the elements of the feedback gain matrix constitute a possibleset of

control designvariables. However, this approach is limited becausethe num-

ber of control designvariables grows very rapidly as the sizeof the model be-

comes larger. In order to overcome this limitation several control design

variable linking schemesare introduced (seeChapter IV).

The foregoing problem statement can be cast in mathematical form as

t\_llows:

Find Y to minimize

F(Y) (2.1)

subject to

Gj(Y) < O, j= 1,..., NCON (2.2)

with bounds

L _ y/UYi -< Yi < i= I,...,NDV (2.3)
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where NDV is the total number of design variables, Y = [Y_, Y2,.-., Yuov] r

is an ND V x 1 design variable vector, F is a scalar objective function, NCON

is the total number of constraints, Gj is the j-th behavior constraint, and

Yp, Y_ are lower and upper bounds of the i-th design variable, respectively.
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Chapter III

MODELLING

3.1 FINITE ELEMENT MODEL

The equations of motion are based on a finite element formulation. The

element stiffness and mass matrices for a general frame finite element in local

coordinates are given in Appendix A. By assembling the element matrices in

the global coordinates the equations of motion can be written as follows:

[M] {Ll} + [C]{q} + [K']{q} = {F} (3.1)

where { q } is an N x 1 vector of nodal degrees of freedom (DOF), { 0 } and

{/t } are first and second time derivatives of { q } respectively, [M] is an

N x N mass matrix, [K] is an N x N stiffness matrix, [C] is an N x N viscous

damping matrix, and { F } is an N x I load vector.

It is assumed that the preassigned damping inherent to the structure can

be represented by a proportional damping matrix which is a linear combina-

tion of the structural mass and stiffness matrices, i.e.,

[C] = c,vl [M] + cx [K], cM, cK constants (3.2)

There are two kinds of load in the vector { F} of Eq. (3.1): control

(actuator) forces and external disturbances. With the assumption that the
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actuator forces and the disturbances act at nodes of the finite elementmodel,

{ F} can be written as

{ F} = I-b] { u } + I-e] {f} (3.3)

where { u } is an M x 1 actuator force vector, M is the number of actuators,

{f} is an L x I vector of external disturbances, L is the number of different

external disturbances making up a single load condition, and [b] and [e] are

N x M and N x L coefficient matrices consisting of the clirectional cosines

which respectively relate actuator and disturbance forces to the global coordi-

nates.

Now Eq. (3.1) can be written as

EM]{q} + EC]{q} + EK-] {q} = [b]{u} + [e]{f} (3.4)

3.2 CONTROL MODEL

Equation (3.4) can be transformed into the first order state space equation

{.2} = [Ao] {x} + [B] {u} + [El {f} (3.5)

where { x } is a 2N x 1 state vector which is the concatenation of the vector

of nodal DOF's and its time derivative ({ q }and { q } ), [Ao] is the 2N x 2N

system open-loop matrix, [B] is the 2N x M system control input matrix, and

[E] is the 2N x L system disturbance matrix. The foregoing transformation

is accomplished by combining the identity { q } = [/] { 0 } with the result
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obtained by solving Eq. (3.4) for { q } and then introducing the following no-

tation: {x}r= k{q}r{q}rj,

[o] [r] ][Ao] = _ [M]-I[/cJ - [M]-I[c]
(3.6)

[0] ] (3.7)
[B] = ira] -lib]

[0] ]
[E] = (3.8)

[M-J-l [e]

where [ ] -1 denotes a matrix inverse, and [0] and [/] are zero and identity

matrices of appropriate dimensions respectively.

In control design problems the control law is to be determined. In this

study linear full state feedback is chosen for the control { u } under the as-

sumption that all the states (components of { x } ) are available, that is

{.} =- ira{x} =- o

where [HI is the M x 2N feedback gain matrix, and [lip] and [H_] are the

M x N sub matrices containing position and velocity components of [H] re-

spectively.

Once { u } and/or [H] are determined, the closed-loop state equation can

be written as
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{._-} = [A]{x} + [El {f} (3.10)

where the closed-loopsystemmatrix [A] is

[A] = [Ao] - [_] [#]

= [ [o]_ [M]-_([K] + [b][/-/p]) - [M]-_([C] + [b][Hv])

(3.11)
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Chapter IV

DESIGN VARIABLE LINKING AND INITIAL CONTROLLER DESIGN

4.1 STRUCTURAL DESIGN VARIABLE LINKING

In the structural optimization problem some kind of linking scheme is

commonly used in order to reduce the number of independent design variables.

In this study two kinds of cross sections are used for the frame finite elements,

namely box beam and solid rectangular beam cross sections (see Figure 1).

For box beam type elements there are 4 cross sectional dimensions which can

be chosen as design variables, i.e., width (B), depth (H), flange and web

thicknesses (T2 and T3). For the rectangular beam element there are two

candidates for design variables: width (B) and depth (H). These cross sectional

dimensions can be linked in different configurations. In Table 1 possible

choices for design variables of an element are shown along with the linking

options within the element. Once design variables for a particular master finite

element are chosen, it is rather straightforward to link the design variables of

any other element to those of the master element.
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4.2 INITIAL STARTUP FEEDBACK GAIN MATRIX

The purpose of control design variable linking is to keep the number of

independent control design variables within a tractable range for design opti-

mization. When any kind of linking scheme is imposed on the feedback gain

matrix, some design space freedom will be sacrificed and this will usually lead

to final objective function values that are inferior to those that could theore-

tically be achieved using a full set of control gain variables with no linking.

However, the performance of the overall design process will depend not only

on what kind of linking schemes are used but also on what kind of startup gain

matrices are used. Three different methods for generating initial startup gain

matrices, before imposing any kind of control variable linking, are suggested

here.

The first initializing method sets the feedback gains arbitrarily (e.g.

EH] = [0] ) and then carries out a few design iterations without any control

design variable linking (i.e., all the elements of the feedback gain matrix are

independent design variables). This allows all the gains as well as the struc-

tural design variables to change freely for a few iterations in order to find a

reasonable initial design prior to imposing some linking on the set of M × 2N

control design variables. Even though the unlinked option is used for only a

few iterations, this can still be a serious restriction, limiting the application of

the method to small problems. In Chapter VIII this method is only applied to

small example problems.
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The second initializing method is to solve the 2N x 2N nonlinear matrix

Riccati equation once in order to find the linear optimal control law corre-

sponding to the initial structural design.The initial gain values obtained from

the matrix Riccati equation solution are then used to establish fixed ratios be-

tween the gains that are assumed to hold throughout the design optimization

process.

The third approach is the decoupled Riccati equation method, which gives

an approximate solution to the conventional full order Riccati equation. This

method uses normal modes to replace the full order Riccati equation by several

sets of 2 x 2 Riccati equations that have explicit closed form solutions. By

neglecting the coupling effect in the feedback loop, the gain matrix in the

modal coordinates can be assembled (with feedback gain vectors corresponding

to each 2 x 2 decoupled Riccati equation solution) and transformed to the

physical coordinates using the normal mode information.

The second and third initializing methods are described further in the

following subsections.

4.2. I Full Order Riccati Equation

Consider Eqs. (3.4) and (3.5) with the external disturbance terms set to

zero (i.e. {f} = {0} ):

[M]{_} + [C]{q} + EK]{q} = [b]{u} (4.1)
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{5:} = [Ao] { X } + [B]{u} (4.2)

The optimal control law to minimize a given performance index

= ({x}T[Q] {x} + {u}T[R] {u})dt (4.3)PI

where [Q] and [R] are 2N x 2N positive semi definite and M x M positive

definite weighting matrices for states and control forces respectively, can be

determined from (see Ref. 28)

{u} = -[H °]{x}

q

-[[Hp] [Hv°]] { q } (4.4)

= - [R] [8]T[P] { x }

where superscript o denotes the initial startup matrix, and the 2N x 2N posi-

tive definite symmetric matrix [P] satisfies the following 2N x 2N nonlinear

matrix Riccati equation:

[P][Ao] + [Ao]T[P] + [Q] - [P][B][R]-I[B]T[P] = [0] (4.5)

Here { } r and [ ] r represent transposed vectors and matrices, respectively.

4.2.2 Decoupled R&cati Equation Solution

In this subsection an alternative method which bypasses solution of the

full order Riccati equation (Eq. (4.5)) is presented. First find the natural fre-

quencies and normal modes of
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[M] {/i/} + [K]{q} = {0} (4.6)

that is solve the standard eigenproblem

2
co i [M] {vii -- [K] {vil i-- 1,2,...,r (4.7)

and normalize the modes { v i } so that

{ vi } T [M] { vj } = 6ij , i,j = 1,2, ... ,r (4.8)

where r is the number of normal modes retained (r< N) and 6 u is the

Kronecker delta. Let

{ q } = { z } (4.9)

where the i-th column of the N x r normal mode matrix [ V'J is the i-th normal

mode {v i} and {z} = mz_'z>'",ZrJrisanrxl normal coordinate vector.

Substituting Eq. (4.9) into Eq. (4.1) and premultiplying [V'J r results in

{2} + Diag[ci]{_} + Diag [co/2]{z} = IV] T[b]{u} (4.10)

where Diag [q] and Diag [col] are diagonal r x r matrices whose components

are q'sandco]'s. It is noted that q = cM + cKco],in view of the propor-

tional damping assumption embodied in Eq. (3.2). Equation (4.10) can be

written in scalar form as follows:

Zi -t- Cizi + 092zi -= { vi}TEb ] { u }, i= 1,2,...,r (4.11)

Now assume that the part of the control vector { u } which is related to

the i-th normal coordinate ( z_ and 2t ) can be calculated independently and
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that the resulting { u } is the sum of all the parts corresponding to each scalar

equation Eq. (4.11).

The foregoing assumption can be stated as follows:

_i + CiZi + ¢02zi = { vi}r[b] ( r){u}(i) + E{u}(k) (4.12)

k#i

where

{ u}(i) : __ [{/_p}(i) { hv}(i) i = 1,2, ... ,r (4.13)

and

{ u }

r

= Z { u}(i)

i=1

× tel }! z2 z2 ... Zr Zr] r

x [z 1 z 2 ,.. zr 21 2 2 ... 2tIT

{z}
The vector { u }(o defined by Eq. (4.13) is an Mx 1 control vector which con-

tains only i.th normal mode information (zi, 2_). Furthermore, {/qp}(o,

{/tv }(o are M x 1 feedback gain vectors which relate { u }(o with zi, z; respec-
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tively, while [/_p] and [/tv] denote M x r position and velocity gain matrices

the columns of which are {/-tp }(i) and {/Tv }(o, respectively.

In order to recover the initial feedback gain matrix ([H°]) in the original

coordinates from [Hp] and [/_] in the normal coordinates, premultiply Eq.

(4.9) by [V]T[M] and note that IV-Jr [M] [V] = [/] , in view of the normal-

ization imposed by Eq. (4.8), so that

{z} = [U] TEM]{q} (4.15)

Then substitute the above equation into the final form of Eq. (4.14)

f_u} =

= -- [Hp] IF'IT[M] {q} - [/_v] [v-JT[_Y[] {0}

- [Hp]{q} - [H °]{0}

from which it follows that

EH°l=[ EH;l EH°l]

(4.16)

(4.17)

[Hp] = [Hp][V]T[M] (4.18)

[ H°] = I/Iv] [ v-IT[ M] (4.19)

Now the remaining problem consists of finding solutions for the r sets of

modal gain vectors { Hp }(0 and {/_ }(i). Eq. (4.12) can be transformed into

the standard first order state space form as
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{ _i } = [A i]{w_} + [/_3 {u}(/)+ {u}(k)
k#i

1 [o] }(o _{= {Wi} + {U +

-- O)i -- Ci { vi}rEb]]
u }(k)

(4.20)

)
where { wi } = Lz, e,j r is the 2 x i state vector, [A,] is the 2 x 2 system

open-loop matrix and [B,] is the 2 x M system input matrix for the i-th modal

equation.

The performance index for the i-th mode (PIi) has the form

PIi= fo_({wi}rEQi] {wi} + {u}(Or[Ri] {u}(i))dt (4.21)

where EQ,] = Diag (Q{1, Q_2) ( Q{,, Q_2> 0 ) is a 2 x 2 weighting matrix for

the i-th state vector and [&] = y_[/'] ( [/] is an Mx M identity matrix,

yi > 0 ) is a weighting matrix for the i-th modal control force vector. Then the

i-th component of the control { u }(o can be determined by

{ u }(i) = -- ERi]-I [Bi]r [Pi] { Wi }

[ 1{}P I P zi

yil [ [0] [b]T{vi} ] LpI{2 P_2_]12 zi

{z}i [b] T{ vi } P22
1 [ [b]T{ Vi } P12 ] ZiYi

i 1 T{! [b]T{vi}Pl2Zi -- --[b-] vi}P_2Zi

(4.22)
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where the 2 x 2 positive definite symmetric matrix [Pi] =

the 2 × 2 Riccati equation

satisfies

[Pi][Ai] + [Ai]T[pi] + [Qi]- [Pi][Bi][Ri]-I[Bi]T[Pi ] = [0] (4.23)

Equation (4.23) can be solved in closed form (see Appendix B) and the results

are

i
Pl --

.

IV i

i
P22 =

_c i + 4c 2 + WiQi 409: + (4.24)22- 2o92 + 2 WiQil

w/

i i 2 i i i
Pll = ciPl2 + o9iP22 + PI2P22Wi

where

1 { vi }v D] D] r { vi}wi = { vi }r[b] [Ri] -l [b] r { vi } ---- y-T (4.25)

By comparing Eq. (4.13) and Eq. (4.22), the i-th feedback gain vectors in

normal coordinates can bc obtained as follows:

i i

{ _p }(i) _ P12 [biT { vi}, { _i v }(i) = P22 [biT { vi } (4.26)
Yi Yi

By substituting Eq. (4.22) into Eq. (4.12), the i-th closed-loop equation be-

comes

23



2 i l }T i)+ Ci + -_i { vi [b] [b] T{ vi}P22 Zi

+ 0 2 + _{ vi} T[b? [b] T{ vi}Pl2 zi

r

_ { Vk }T[b] [b] T { v k } (Plk2 zk + P22 Zk

k#i

(4.27)

To summarize, the original full order Riccati equation

placed by r sets of 2 x 2

closed form solutions Eq.

Eq. (4.5) is re-

Riccati equations (Eq. (4.23)) which have explicit

(4.24). Then the feedback gain matrix [/7/-] =

[[/qp] [/qv]] in normal coordinates is transformed to [H] in the original co-

ordinate system by using Eqs. (4.17)-(4.19).

The method presented in this subsection has a considerable advantage

over the full order Riccati equation solution approach described in the previ-

ous subsection. This innovative method is in fact explicit and efficient so that

this 2 x 2 Riccati solution procedure can be performed periodically to update

the fixed ratios initially established by the startup gain matrix.

4.3 CONTROL DESIGN VARIABLE LINKING (1): ROW-WISE AND

COLUMN-WISE CONTROL DESIGN VARIABLE LINKING

In this section various linking options for control design variables based

on row-wise and column-wise linking schemes of the feedback gain matrix are

presented (see Ref. 26). First the feedback gain matrix [HI can be written in

various ways as follows:
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Em = [ EH ] ]

LHJl

LHJ2

LHJM

LH J ,, LHdM

(4.28)

: [ {Hp} I {Hp} 2-'- {Hp}N {Hv} 1 {Hv} 2--- {Hv} N]

H(1,1) H(1,2) H(1,2N)

H(2,1 ) H(2,2) H(2,2 N)

H(M,I) H(M,2) H(M,2N)

where [H] is the M x 2N feedback gain matrix, [H_,] and [H_] are M x N sub

matrices of [H] containing position and velocity parts respectively, LH]y is the

j-th row (1 x 2N) of [H], [HpJj and LH_Jj are the j-th rows (1 × N) of

[Hp],[H_] respectively, { Hp }t and { Hv }t are the i-th columns (M × !) of

[tip] and [Hv] respectively and H(j,i ) is the (j,i)-th component of [HI .

The main ideas underlying the creation of alternative row-wise and

column-wise control design variable linking schemes are: (1) separation of ve-
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locity and position parts of the gain matrix; (2) various row and column

schemes corresponding to actuator and degree of freedom linking; and (3)

linking schemes based on only allowing changes in various sets of velocity

gains. Combining the foregoing ideas leads to numerous linking schemes with

distinct sets and various numbers of independent control system design vari-

ables (CDV's), ranging from I to M x 2N (see Table 2).

For example consider option number 5 in Table 2. The feedback gain

matrix can be written as follows:

[H] =

LHpJl LHvJt

LHpJ2 LHd2

LHpJM LHdM

_l LHpJl

_2LH_J2

o

_MLH_JM

_.v+l LHOjl

_M+2 LH°J2

o2.uLHv J,_t

(4.29)

Left hand side represents the M x 2N feedback gain matrix in partitioned

row-wise form ([Hp]j, [_HvJj represent the j-th rows of [Hp] and [H_], re-

spectively), and the right hand side has scalar participation coefficients (ei's)

placed in front of the partitioned rows of the initial startup gain matrix on

which the linking scheme is imposed (superscript o denotes the initial startup

matrix). During optimization the e[s are treated as independent design vari-

ables (simultaneously with the CSD's) and as they are optimized, the feedback

gain matrix [H] is optimized in the constrained design space corresponding to

the fixed ratios established by the rows of the initial startup matrix.
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4.4 CONTROL DESIGN VARIABLE LINKING (II):
BLOCK TYPE CONTROL DESIGN VARIABLE LINKING

In this section a different approach to linking of control design variables

is introduced and assessed when the decoupled 2 x 2 Riccati equation solution

method is used in finding the initial startup gain matrix (see Ref. 27). The

initial feedback gain matrix obtained by solving r sets of 2 x 2 Riccati

equations (Eqs. (4.17)-(4.19)) can be rewritten in the following form

EH° : [ EH#JEuol]
r •

i=1 i=1

(4.30)

r •

i=1 i=1

(4.31)

E E[HrO] = { Hv }(/) { vi } T [A_¢] _-- [Hf](i)

i=l i=1

(4.32)

where superscripts (i) indicate that these quantities correspond to the i-th

Riccati equation. The foregoing equations imply that the [H_](O's and

[H°] u)'s or the [H°]_0's may be interpreted as basis matrices which can be

used to generate the initial gain matrix. This suggests that the actual feedback

gain matrix can be well approximated as a linear combination of these basis

matrices, namely

[H] = E _i [H°] (i) (4.33)
i=I
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or

f-

i=!

(4.34)

The whole feedback gain matrix can be linked (Eq. (4.33)), or the position and

velocity parts of the gain matrix can be block linked separately (Eq. (4.34)).

During optimization the participation coefficients _/s are treated as independ-

ent design variables along with the structural sizing variables. It should also

be noted that these participation coefficients can be further linked with each

other.

4.5 PROBLEMS IN CONTROL DESIGN VARIABLE LINKING

In this section some special aspects of using control design variable linking

schemes are discussed.

When a specific control design variable linking scheme is used, the relative

values of certain elements in the feedback gain matrix [H] remain frozen

throughout the design process according to the linking scheme selected. For

example, if the last option of Table 2 (which links all the elements of [HI to-

gether) is used, all the ratios among the elements of [HI are invariant.

But, as mentioned earlier, 2 x 2 Riccati equations can be re-solved to

update the fixed ratios between the elements of the gain matrix. This is done

by finding a new weighting coefficient (_,_, see Eq. (4.21)) for each mode. A

rational procedure for updating the weighting matrices is described in Appen-
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dix C. When the new sets of weighting matrices are found, special attention

is given to preserving continuity of the real part of the closed-loop eigenvalues,

so that the dynamic behavior remains relatively smooth between the updating

stages.

Another problem to be adressed in using control design variable linking

schemes is that higher modes, which are not directly constrained in the opti-

mization problem, may become unstable after several design cycles. This effect

is explained in detail in Appendix D and a way of preventing instability of

unconstrained higher modes without knowing higher mode information is also

suggested.
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Chapter V

DYNAMIC BEHAVIOR CONSTRAINTS

5.1 INTRODUCTION

For the dynamic problems with transient external disturbances the set of

possible behavior constraints should include: (1) complex eigenvalue con-

straints; (2) transient response and control force constraints; and (3) control

effort constraints.

Every inequality behavior constraint can be written in the form

g -< ga (5.1)

where g is a measure of a certain behavior and g_ is its allowable value. The

above relation is transformed into a normalized form with respect to its al-

lowable value such that the constraint function (G) is always negative.

(7 _< 0 (5.2)

where

g

G = ga 1, when ga > O,

g

G = 1 ga' when ga < 0

(5.3)
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5.2 COMPLEX EIGENPROBLEM

Since the closed-loop [A] matrix (Eq. (3.11)) is not symmetric,

eigenvalues and eigenvectors are complex and two distinct sets of eigenvectors

exist for each eigenvalue. For the i-th eigenvalue )._ , the right eigenvector

{ _bi} satisfies

[A] { _bi} = 2i{ q_i} (5.4)

and the left hand eigenvector { _bz} satisfies

{ _i}T[A] = )ti{_bi} T (5.5)

and

)ti = 6i q- codi (5.6)

where az and cod, are real and imaginary parts of the i-th complex eigenvalue.

Also the modal damping factor {i of the i-th mode is defined as

¢7i
¢i = - (5.7)

2
N� a2 + codi

These two sets of right and left hand eigenvectors are normalized such that (see

Ref. 29)

{q_i}T{_i} = d i (5.8)

and

{ _ j } T { d?i } = _Sij (5.9)
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where d i is a normalizing scalar constant for the i-th right eigenvector and 6ij

is a Kronecker delta. After solving both right and left eigenproblem, and

normalizing the eigenvectors, it can be shown that the following matrix re-

lations represent valid identities:

[A] [_] = [m][A]

[_]T[A] = [A] [_]T

[_v]T [_] = [/-]

[_]T[A] [_] = [A]

(5.10)

where [_] = [ _bl ¢2 .-- q_2R ] is a 2Nx 2R eigenmatrix in which the i-th

column is the i-th right hand eigenvector, [W] = [ _bl 42 .--_O2R ] is a

2N x 2R cigcnmatrix in which the i-th column is the i-th left hand eigenvector,

[A] is a 2R × 2R diagonal matrix which contains eigenvalues on its diagonal

and 2R is the numbcr of cigenvalues and eigenvcctors considered ( R < N).

5.3 DYNAMIC TRANSIENT RESPONSE ANALYSIS

Time dependent response and control force constraints are replaced with

a finite number of peak constraints by first finding the corresponding peak

times using the adaptive one dimensional search method described in Ref. 30.

In order to calculate the transient response of the given system Eq. (3.10)

should be integrated in the time domain. Since Eq. (3.10) is coupled and usu-

ally large, a sct of complex eigenvectors is chosen as a basis to diagonalize and

reduce the dimensions of the original equation. Let
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{ x } = I-,] { / (5.11)

where [q_] is a 2Nx 2R(R < N) right hand eigenmatrix and {11 } is a

2R x 1 complex normal coordinate vector. Substituting Eq. (5.11) into Eq.

(3.10) and premultiplying by [_]r( 2R x 2N left hand eigenmatrix trans-

posed) yields

[_]T[(1)] {// } = [T]T[A] [(P] {r/} + [hu] T[ Lm] {f} (5.12)

and introducing the identities in Eq. (5.10) leads to

{//} = [A] {r/} + [_]T[E] {f} (5.13)

Equation (5.13) is equivalent to the following sets of 2R first order scalar dif-

ferential equations

ili = )ti?l i + {@i}T[E] {f}, i= 1,2, ... ,2R (5.14)

Integrating Eq. (5.14) with respect to time gives

= f te_.i(t-r) }Trli(t) e_'i(t-t°)_li(to) + { tk i [El {f( r ) } dz (5.15)

t o

where to is an initial time and t is a specific time of interest. Here { f(t) } is

assumed to be expressed in terms of a truncated Fourier series and

polynomials over a specified period of time i.e.,
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Nn Ne

k=l _0

when O < t <_ tf

{f(t)} = O, when t>tf

(5.16)

where tf is the specified time interval during which disturbances are applied,

.,Va is the number of different driving frequencies, {FC}k and {FS}_, are

L x 1 vectors which contain cosine and sine components corresponding to the

k-th driving frequency f_k and Ne denotes the highest order polynomial term

considered and the L xl vector {FP}p corresponds to the p-th order

polynomial. Then substituting Eq. (5.16) into Eq. (5.15) yields

e"i t r/i (0)

+ { tpi}r[E 3 e ,(t-r)

/ Ue

+ {,i E {FP}P rp

({FC}k cos D.kr + {FS} k sin f2kr )

when 0 <_ t <_ tf

l dr

(5.17)

qi(t ) = e )'i(t- 9)r/i(tf) when t > tf

More detailed expressions for the r/i's are given in Appendix E.

lating the ' i 1r/i S, = ,

Eq. (5. l I)

{x} = ['3 {,7}

After calcu-

... , 2R the state vector { x (t)} can be recovered from

(5.11)

and the control force vector { u (t)} (see Eq. (3.9)) is given by
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{u} = - [HI {x} = - [H][(1)]{11} (5.18)

Also the transient acceleration can be calculated by differentiating Eq. (5.11)

with respect to time and using the relation Eq. (5.13) to give:

{k} = [q)] {//} = [q)] ([A] {1/ } + [w]T [E] {f}) (5.19)

5.4 CONTROL EFFORT

The control effort can be defined as

Control Effort = { u} T[RCE ] { u}dt

= ftf{u}T[RcE ] {u}dt +

aO

(5.20)

ic_{ u [RcE] u }}r { dt

9

where [RcE ] is an M x M positive definite symmetric weighting matrix.

When the time tz (during which the external disturbance force is applied)

is small, the first term of the right hand side is negligible compared with the

second term. So in this work the control effort (CE) is defined as

CE = {u}T[RcE] {u}dt

(= { x }T[H]T[RcE ] [H] { x }dt

I_ ° T ]
= {x} [QcE {x}m

(5.21)

where [QcE] = [H-]r[RcE] [H].
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Consider the closed-Loopequation (Eq. (3.10)) when t > tf

{2} = [A]{x}, t > 9" (5.22)

Substituting Eq. (5.11) into Eq. (5.22), premultiplying by [_]r, and using the

identities in Eq. (5.10) leads to the following expression

{it} = [A]{_I}, t >_ tf (5.23)

Substituting Eq. (5.11) into Eq. (5.21) above gives

CE
oO, O

= { 77}T [q_]T [QcE] [*] { rt }dt
9

9

where

{ rt (t) } can be written as

{_l(t)} = e EA](t-9){r/(tf)},

[Q] = [*]r[Qce ] 1-*] From Eq.

(5.24)

(5.23), the complex response

t >_ tf (5.25)

Substituting Eq. (5.25) into Eq. (5.24) yields

CE = {rl(tf)} T _eEA]r(t-9) EQ]e [A](t-tf)dt {r/(tf)} (5.26)
9

Let

_eEA]r( t-- 9) dt (5.27)

then

36



+

EA]TE_V -] + [_V] EA]

°°[A]Te[A]r( t- tf) [_] e[A]( t- if) dt
9

[°°e[A]r( t- 9) [_)] e[A]( t- 9)dt[A]
9

= [e[A]r(

e_a]T('-VlEO]e[m('-V)) d,

t-9) EQ]e[A](t-9)] ]

9

Eol- E61

(5.28)

= _ [6]

or

(5.29)

which is a Lyapunov equation.

given by

Therefore the control effort of Eq. (5.26) is

CE = {rl(tf)}T[_v-]{rl(tf)} (5.30)

where [#'] satisfies Eq. (5.29). Equation (5.29) can be solved element by ele-

ment since [A] is a diagonal matrix and [Q] is a symmetric matrix, i.e.,

I_"/j = _i + :ty (5.31)
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where _Vij and (_ij are the (i,j)-th element of [t'V] and [(_] ( (_u

{ _bi }r [QcE] { _j }) and { _bi} is the i-th complex right hand eigenvector.

5.5 ACTUATOR MASS CONSTRAINTS

The actuators, located at specified structural nodes, can be sized so that

they produce control forces or torques required to suppress the vibration. In

Ref. 31, it is assumed that actuator masses are fixed during one cycle of opti-

mization, and they are updated after finding peak control force or torque val-

ues of the new design according to functional or empirical relations between

the maximum peak control forces or torques and the required actuator mass.

When the closed form solution for the transient peak control forces or

torques is available, the relation between the actuator mass and the control

forces or torques can be mathematically stated in a constraint form as follows:

m.4 >--c l I u(t) lc2, 0 < t < tma x (5.32)

or

mA >-- Cl t u(tj )I c2, j = I, ..., NPEAK (5.33)

where m A is the mass of the actuator, tmax is the time interval of interest, tj" is

the j-th peak time for control forces or torques, NPEAK is the number of

control force peak times, and ct , c2 are constants relating the peak control

forces and required actuator masses. Eq. (5.33) can be normalized such that
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G

4,

q l u(tj )1c_
m A

-1<0, j= 1,..., NPEAK (5.34)
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Chapter VI

SENSITIVITY ANALYSIS

6.1 INTRODUCTION

In order to generate approximate problems first order system sensitivity

information with respect to both structural and control design variables is re-

quired. Since it is assumed that the external loads are expressed in terms of a

truncated Fourier series and polynomials over a specified period of time, it is

possible to calculate all of the (first order) behavior sensitivity derivatives an-

alytically.

6.2 FUNDAMENTAL SYSTEM MATRIX DERIVATIVES

Derivatives of [H] with respect to control design variables are obtained

directly and derivatives of [M], l-C] and [K] with respect to structural vari-

ables are obtained analytically from the finite element formulation. From this

information analytic sensitivities of the system [A] and I-El matrices (see Eq.

(3.10)) can be obtained with respect to an arbitrary intermediate or direct de-

sign variable _, as follows:

[o] [o]

OEA21] O[A22]
0_ 0e

(6.1)
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and

,?EEl
635

[o]

0[E 2]

_5

(6.2)

where in general

O[A2_] a[m] -I (a5 - a5 ([f] + D]EHp]) - [M] -_ a[f]a5

OEA22] OEM] -1

_5 05

oE-A)+ [b] &

(6.3)

OEt6])+ [hi a-----T-

_[E2] aDt]-
- [e] (6.4)

05 a5

It should be noted that the matrices [b] and [e] are constant with respect to

any design variable and that according to the type of the design variable 5 ,

structural or control, some matrices are independent of that kind of design

variable. In other words, the derivatives of [M], [C] and [K] with respect to

the control design variables are zero and those of [Hp] and [Hv] with respect

to the structural design variables are also zero. The derivative O[M]-I[& is

calculated by differentiating [M] [M] -I = [/] = constant, which results in

aDt] -_
a5

[M] -1 _ [,l/] -1 (6.5)
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6.3 EIGENPROBLEM SENSITIVITIES

Eigenvalue sensitivities are needed not only because eigenvalues them-

selves can be behavior constraints but also because they are required to calcu-

late other response sensitivities (see Eq. (6.18)). Furthermore, in order to

obtain precise transient response sensitivities, eigenvector sensitivities are also

calculated using an analytic method (Refs. 32 and 33).

Differentiate Eq. (5.4) and (5.5) with respect to s and rearrange terms

([A]- frill_i)O{c_i} ( _[A] a_.i )as - 0---_ { _i} os { _i} (6.6.a)

_{ _i} T ( T)& (I-A-] - )t/E/J) = - { _i}T OEA] 02i& & { _'i} (6.6.b)

OF

0{_i}
[&] & { F,.} (6.7.a)

_{_}r
Os EEl] = - { Gi } T

(6.7.b)

where

[Zi]-- I-A]- ),iF/] (6.8)

O[A] a2_
{ Fi } - as { dpi } os {4,_} (6.9.a)

{ Gi }T = { _i } T O[A]
as

(6.9.b)
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Premultiplying Eq. (6.6.a) by { #1i }r and using Eq. (5.5) and Eq. (5.9) leads to

the following expression for eigenvalue derivatives

Ofti= Oai OOJdi a[A]
0_ a--_- -i- a_ = { _ki} T { q_i } (6.10)3_

or

Octi O[A] { q_i}R { 4ji}Tl aEA]as = { _bi}T d'---_-" - 0"----_--{ dpi}! (6.11)

and

OC°dio_ -- { _i }TIc O[A]o.._.__{ q_i}l + { _bi}T O[A]o._ { q_i}R (6.12)

where subscripts R and I represent real and imaginary parts. The sensitivity

of the modal damping factor 4,. is calculated by differentiating Eq. (5.7) with

respect to _ as follows:

OOjdi cOai )O_ i °)di ff i ao_ aot O)di

= (6.13)

0a (a2 + 2)3/2

The derivative of the i-th eigenvector can be expressed as the sum of ho-

mogeneous and particular parts, as follows:

O{ d?i}
Oot = ai { dpi} + { Vi } (6.14.a)

a{_i} T
oot = bi{_bi}T + { Ui}T (6.14.b)
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The particular solutions { V i } and { Ui }r satisfy

EZ_3 { Vi} - { F/} (6.15.a)

{ Ui } T [Zi] - { G-_} T (6.15.b)

where [Z--I] is matrix [Z_] with the r-th column and row replaced by { e, } and

{ er }r respectively, { e r } is a vector containing 1 in the r-th element and O's

clsewhere,{ if/} and { G-]} are vectors { Fi } and { Gi} respectively with the

r-th element replaced by zero, where r is the location of the maximum absolute

element in { _b_} . The coefficients of the homogeneous parts, a_ and bi, can

be calculated by differentiating the normalization conditions Eq. (5.8) and Eq.

(5.9), noting that d_ is a constant and i =j as follows:

-_--_ ( { dpi}T { dpi} ) = O, -_-_ ( {_bi}T { dpi} ) = 0

hence (in view of Eq. (6.14))

{dpi}T(ai{dPi} + { Vi} ) = O,

(bi{_ti}T + { ui}T){dpi} + {_bi}T(ai{_Pi} + { Vi}) = 0

so that

{_i}T{ Vi } { Oi}T { vi}
a i _ _ _

{ q_i } T { q_i } di

(6.16.a)

bi = _ ai - { Ui} T { dpi} - { _i} T { Vi} (6.16.b)
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6.4 TRANSIENT RESPONSE SENSITIVITIES

For an arbitrary peak time t, peak response sensitivities can be calculated

by differentiating Eq. (5.11) as

c3{ x(t) }

&
= a-2.-([¢] {,7 (0 })

&

0[@] a{ r/(t) }
{,7(t)} + [0]

(6.17)

In the above equation, the only term not previously derived is 0{ rt (t) }]Oot and

it can be obtained by differentiating Eq. (5.15) with respect to the design var-

iable _, assuming that the external disturbances are independent of the design

variables, i.e. Ok, {FC}k, {FS}k, k = 1, Nca and {FP}p, p = 1, Nt, are constant

as follows:

Orli(t) 0 { e2i(t- to) ftl 2(t-r) T }Oot = 0"_ rli(t°) + e ' { _i} [ E] {f( z ) } dz

O)t i
---_(t - to) e_'i(t-t°)rli(to) + e )ti(t-t°) Orli(t°)dot

_t 02i e).i(t-_) } T
+ Jto--ff-d-_(t- _) { ¢i [E] {f( z ) } &

te;q(t__) 0{ _bi }T+ [E-J {f(,) } dr
to OOt

it 2.(t-,) }TO[ E] {f(,)}&+ e ' { ¢i O--_-
"0

(6.18)

Once 0{ r/(t)}]&c is calculated, sensitivities of control force and acceleration

can be obtained by differenting Eqs. (5.18) and (5.19), respectively.
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A more detailed derivation of Or/i (t)/O= is given in Appendix E. It should

be noted that the above calculation is carried out only at previously identified

peak response or peak control force times.

6.5 CONTROL EFFORT DERIVATIVE

The sensitivity of the control effort with respect to the design variable

is obtained by differentiating Eq. (5.30),

c_(CE) }Ta[_"] {r/(tf)} + 2{r/((f)}T[l_] cg{r/(tf)} (6.19)_# = {r/(ef) D"--'_ " 0o¢

In the above expression _{ r/(tl) }10_ can be calculated according to the pro-

cedure presented in the previous section for t = (r and the only unknown term

is c_E_V]]O_ and it can be determined by differentiating Eq. (5.31) as follows:

aoc a_ _.i + ;V ;_i + ,tj a_

('_i -F ,_j)2 k _ + _ Q/j (,_i + ,_j)

(6.20)

but

(_/j = { q_i } T [QcE] { _j } (6.21)

so that
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{&_}T O[QcE]on {_J}

0{_i} r 0{ 4,j}
+ 0n [QcE] {4) } + {qbi}T[QcE] 0e

(6.22)

6.6 ACTUATOR MASS CONSTRAINT DERIVATIVE

The sensitivity of the actuator mass constraint with respect to an arbitrary

design variable _ is obtained by differentiating Eq. (5.34) so that

( )OG = cl O [ u(9)1c2 (6.23)

which gives

I { )
#

0___q_a= cl 0nO_ _ c2 u(9 ) _+ _(9)2-L;-_ T (6.24)

when u(t]) > 0 and

[ { }__ = 1 "c2 u * e2-10u(tj)Oa ct - (9)
On mA c?e

(6.25)

ou(q)
when u(t]) < O. In the above expression, Ooc is the sensitivity of the peak

0(,)control forces, and _ _ is nonzero only when • is the corresponding

actuator mass variable.
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Chapter VII

OPTIMIZATION

7.1 INTRODUCTION

Various approximation concepts such as structural and control design

variable linking presented in Chapter IV, temporary constraint deletion and

intermediate design variables (Refs. 34 and 35) are used to replace the original

optimization problem stated in Chapter II by a series of explicit approximate

problems. With the first order sensitivity information derived in Chapter VI,

linear, reciprocal or hybrid approximations can be made with respect to either

direct or intermediate design variables, even though the approximate design

optimization problems are ahvays solved in an integrated design space that

spans the actual structural CSD's and the participation coefficients of the

linked control gains. Each approximate optimization problem has its own

lower and upper bounds on the design variables determined by given move

limits and retains a set of constraints which are active and potentially active

for the approximate problem.
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7.2 INTERMEDIATE DESIGN VARIABLES

In order to generate a high quality approximate problem intermediate

design variables are used. For frame elements it is known that the section

properties A, Iy, 12 and J are a good choice for intermediate design variables.

This follows from the fact that the elements of the stiffness and the mass ma-

trices are linear functions of these section properties (see Appendix A).

Control design variables are used directly in the generation of the ap-

proximate problem because the system matrices are linear functions of the

gains. After some numerical experimentation, most behavior constraints used

in this work are found to be adequately approximated by the linear approxi-

mation with respect to control design variables. So when generating the ap-

proximate functions the linear approximation is always chosen for control

design variables although the hybrid approximation can be used with respect

to intermediate structural design variables.

7.3 TEMPORARY CONSTRAINT DELETION

In order to find a reduced set of constraints for each approximate problem

the following rules are used: (1) all constraints which are greater than a given

cutoff parameter are retained; and (2) when all the constraints in one specific

category, for example when all the peak actuator force constraints are less than

the given cutoff parameter, the one which has maximum value among them is

retained so that the effect of this specific category will not be neglected.
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After determining which constraints are retained for the approximate

problem, sensitivities of those retained constraints along with the objective

function are calculated analytically as shown in Chapter VI.

7.4 APPROXIMATE PROBLEM

With the information acquired from the analysis and sensitivity analysis

phase each approximate optimization problem can be formulated as follows:

Find a design variable vector Y to minimize

(7.1)

subject to

_0, J _ QR (7.2)

with bounds

Y < Yi <- i= I,...,NDV (7.3)

where NDV is the total number of design variables, Y is a vector of design

variables (NDVx 1), NIDV is the total number of intermediate design vari-

ables, X ( Y ) is a vector of intermediate design variables (NID V x 1), F (') is

an approximate objective function, (Tj (.) is the j-th approximate constraint,

_') and _'_ are lower and upper bounds of the i-th design variable which are
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determined by a given move limit, and QR is the retained set of constraints for

the approximate problem.

Either linear , reciprocal or hybrid approximation can be used for F" (-)

and (}j (.). The details of the hybrid approximation follow. Let.f (') be any

approximate function ( _" (.) or (}i (')), then during the approximate opti-

mization cycle f (.) is

Y(X(Y)) = f(X(Yo)) +

=Jo+

NID V

Cok Bk (X ( v ))
k=l

B k (X ( Y ))

(7.4)

where Yo, fo = f(X ( Yo )), Cok = 0f(X ( Yo ))/0Xk, k = 1, ..., NID V are values

at the beginning of the approximate problem which remain constant during the

cycle, and

B k (X ( Y )) =

Bk (X ( v )) =

xk(v ) - xk(Vo),

(1-- (Xk(Yo)) 2 "Xk(Y )

when Cok > 0

(7.5)X

1 _ when Cok < 0
Xk ( Yo ) J'

and derivative ofj _ (-) with respect to the i-th design variable Y,. is

_V_O V
? Bk(x ( v ))

Og i OY i
k=l

(7.6)

where
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OBk(X(V)) OXk(V)

_Yi OYi '

OBk(X(Y)). (Xk(Yo))20Xk(Y)
OY i Xk ( Y ) OYi

when Cok > 0

when Cok < 0

(7.7)

Note that when no intermediate design variables are used,

NIDV = NDVandX(Y) = YorXt = Yi, i= 1,2, ... ,NDV.
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Chapter VIII

NUMERICAL RESULTS

8.1 INTRODUCTION

The control augmented structural optimization solution method described

in the previous chapters has been implemented on the IBM 3090 main frame

computer at UCLA. Numerical results for several examples, which illustrate

the effectiveness of alternative control design variable linking schemes, are

presented here. In most example problems, CONMIN (Ref. 36) is used as the

optimizer, and it is conservatively assumed that the passive damping is zero

( c w = cK = O, see Eq. (3.2)), unless otherwise specified. The convergence cri-

terion used in these examples is that the relative change in the objective func-

tion values between two sets of consecutive design iterations should be less

than 0.1 percent.

8.2 EXAMPLE 1 - CANTILEVER BEAM

The first example is a cantilever beam as shown in Figure 2 free to deflect

in plane(E =7.1x106N/crn 2, p = 2.768x lO-3kg/cm 3). It has a box beam

type cross section and is modelled by 10 equal length (100 cm) finite elements

resulting in 20 degrees of freedom (N = 20). A concentrated mass of 200 kg

is located at the middle of the beam and a single translational actuator
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( M = 1 ) having a mass of 4 kg applies control force u ( t ) at the tip. A tran-

sient half sine pulse (with a magnitude of 4000 N at a frequency of 3.9 Hz) is

applied at the tip translational degree of freedom for a time interval 0 < t <

0.1282 seconds. The dimension of the first order state equation (see Eq. (3.10))

is 40 (2N), so the total number of complex modes is 40. Transient responses

are considered for the time interval 0 _< t < 2 seconds and the lowest 20 out

of the 40 complex modes (according to the absolute value of the imaginary

parts of the complex eigenvalues) are used to calculate the transient responses.

The normalizing constants for the right hand complex eigenvectors (di's, see

Eq. (5.8)) are chosen to be 105.

For each finite element the width (B) and depth (H) are fixed (B -- H =40

cm), but the flange and web thicknesses are free to change (subject to side

constraints 0.5 cm < T2, T3 < 10.0 era) resulting in two design variables per

finite element. Initial thicknesses are all set to 5.0 cm.

Total mass is taken as the objective function and it includes: (l) the fixed

mass at midspan (200 kg); (2) the fixed actuator mass at the tip (4 kg); and (3)

the variable structural mass. All the finite elements are linked resulting in 2

structural design variables (SDV's). Hybrid approximations in terms of the

structural intermediate design variables (sectional properties) are used while

the approximations with respect to the control design variables (CDV's) are

linear. Behavior constraints are imposed on: (1) the real part of all the re-

tained complex modes (o- i < -0.5, i = 1,... 10 ): (2) the lowest damped fre-
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quency (o_d,> 4.0 Hz ); (3) the peak tip displacement,

( I q_9(t)[ < 10.0 cm ); and (4) the peak actuator force ( ]u(t)[ < 1000N).

8.2.1 Control DesQn Variable Linking (I)

In this section, row-wise and column-wise control design variable linking

schemes which are described in section 4.3 are applied to the cantilever struc-

ture. The maximum possible number of control design variables is relatively

small (?,I x 2N = 40), so all available control design variable linking options

are tried (see Table 2). Since there is only one actuator, there are 5 distinct

control design variable linking options for the same problem instead of 10 (for

M = 1 each column of the gain matrix contains only one element, so the

options 1, 2, 5, 7 and 6 are identical to 3, 4, 8, 9 and 10, respectively, see Table

2).

Initial startup feedback gains are computed by solving 10 sets of 2 x 2

Riccati equations corresponding to the lowest 10 normal modes (r = 10). The

control weighting coefficients )'i's are set to 1/300 and the 2 × 2 state weighting

matrices are chosen to be [Q_] = Diag ( ¢o_, I ) i = !, ..., r so that the first term

of Eq. (4.21) represents a total (strain and kinetic) modal energy.

Five distinct control design variable linking options are imposed on the

startup gain matrix from the beginning. Move limits of 50 to 60 percent for

structural variables and 90 percent for control variables are used. Iteration
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histories and final structural designsare given in Tables 3 and 4 respectively,

and are also displayed in Figures 3 and 4.

In case 1 the feedback gain matrix is totally unlinked (or equivalently

columns of I-HI are linked, Option I or 3 of Table 2). The number of control

design variables (CDV's) is 40. This case allows complete freedom in the

control design variable space and the final design is a near minimum gauge

design with respect to the cross sectional dimensions (see Table 4). In case 2

the position part of the feedback gain matrix is fixed and the elements of ve-

locity part are chosen as design variables (or columns of velocity part are

linked, Option 2 or 4 of Table 2), resulting in 20 control design variables. In

this case the convergence is relatively slow and the optimum mass is high con-

sidering the freedom given to the design space. This is because even though

the elements of the velocity part of the feedback gain matrix can change freely,

the fixed initial position gains are not appropriate. This can be attributed to

the fact that when the position gains are fixed at their initial values, the peak

displacement and frequency constraints must be satisfied by increasing the

structural stiffness (once the peak actuator force constraint has become active).

In case 3 the position and velocity parts (or the rows of the position and ve-

locity parts) of the feedback gain matrix are linked (Option 5 or 8 of Table 2),

which leaves 2 independent control design variables. The results for this op-

tion are remarkable because it takes only 10 analyses to completely converge

to a near minimum gauge design using only 4 independent design variables (2

SDV's and 2 CDV's). In case 4 the position part of the feedback gain matrix
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is fixed and the velocity part (or the rows of the velocity part) of the feedback

gain matrix is linked (Option 7 or 9 of Table 2) which leavesa singlecontrol

designvariable. In case5 the row of the feedbackgain matrix (or the the en-

tire feedbackgain matrix) is linked (Option 6 or 10 of Table 2) which leaves

also only one control design variable. Cases4 and 5 exhibit similar conver-

gencehistories and final designsexcept for the position part of the feedback

gain matrix (which is frozen in case4). As one would expectwhen seekinga

minimum massdesign, the final web thicknessesin all casesare at the lower

bound value (i.e. T3 = 0.5 crn, see Table 4 and Figure 4).

For comparison purposes the results for cases 1-5 are summarized in Ta-

ble 5 along with the active constraints at the final design. Most cases con-

verged smoothly and the maximum difference in the final objective function

values achieved was as less than 15 percent. As expected the final design mass

becomes larger as more restrictive linking is imposed, but the convergence be-

comes more robust and the total number of analyses required to obtain con-

vergence is reduced (e.g., see cases 3-5).

8.2.2 Different Initial Gains for Generating Startup Gain Alatrix

In this section different arbitrary initial feedback gain matrices are used

to find startup gain matrices in order to examine the first initializing method

(see section 4.2). It will be recalled that this method chooses arbitrary initial

control gains to start and then allows a few totally unlinked iterations before

imposing any control design variable linking. Four different initial feedback
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gain arrangementsare chosenand 3 iterations areallowed without any control

design variable linking (40 independent CDV's, option I or 3 of Table 2).

Then the position and velocity parts of the gain matrix are linked (2 inde-

pendent CDV's, option 5 or 8 of Table 2).

In case6 the initial gain matrix is null ([HI = [0]). In case7 the initial

gain matrix is chosenin a mannersimilar to that which would be usedif direct

output feedback control was being employed (H(1, 19)= 5 kg[sec. 2,

H(I, 39) = 100 kg[sec., H(I, i) = 0, elsewhere). In cases 6 and 7, in addition to

the larger move limits for the control design variables (i.e., 190 percent), abso-

lute move limits are used for small elements (namely, for gain elements less

than 1 move limits are set to 100) during the unlinked iterations. In case 8 the

initial gain matrix is calculated by solving the full order Riccati equation with

1

weighting matrices [Q] = Diag [ [K], [?,1] ] and [R] = 30----6-[/] . In case 9

the initial feedback gain matrix is obtained by solving 10 sets of 2 x 2 Riccati

equations followed by three unlinked iterations to generate the startup matrix.

Iteration histories and final structural dimensions are given in Tables 6-7

and Figures 5-6. All four cases converge to similar final mass values. For

comparison the results for cases 6-9 are summarized in Table 8 along with the

active constraints at the final design. In this example the final web thicknesses

in all cases take on their lower bound value (i.e. T3 = 0.5 cm, see Figure 6).

The results for cases 6-9 show that the initial gain matrix used to generate

a startup gain matrix (via three iterations without any CDV linking) does not
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have a significant effect on the final structural design or the minimum mass

values achieved. It is important to note that the method used in this section

can not be extended to larger problems because as the number of CDV's in-

volved increases (i.e., according to number of CDV's = :14' x 2N ), the three

totally unlinked optimization cycles required to generate the startup gain ma-

trix become intractable.

8.3 EXAMPLE 2 - ACOSS FOUR STRUCTURE: CDV LINKING (I)

The second example is the ACOSS FOUR structure shown in Figure 7.

Several studies have been made on this model (see Refs. I1, 13-16, 18 and 19)

since it represents one of the simplest configurations for a 3 dimensional space

structure. It consists of twelve truss elements and has 12 degrees of freedom.

Nondimensionalized Young's modulus and mass density are 1 and 0.001 units,

respectively. The edges of this tetrahedral truss are 10 units long, and the six

supporting links are 2.83 units long. An actuator is located in each of the six

supporting links (elements 7 through 12) introducing control forces that act

along the supporting links, and 4 nonstructural masses of 2 units each are at-

tached at nodes 1-4. The nodal coordinates are given in Table 9 (from Ref.

I1).

The design objective is to minimize the structural mass satisfying given

behavior constraints on the closed-loop eigenvalues. Truss member areas are

the design variables and no structural linking scheme is used, therefore, the
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number of independent structural design variables is 12. Initial truss member

areas are given in Table 10 along with the final areas for all 4 cases. Lower

and upper limits on the areas are 10 and 1500, respectively. The most restric-

tive control design variable linking scheme (option number 10 of Table 2) is

chosen which leaves only one independent control design variable (elements of

the feedback gain matrix are all linked). Hybrid approximation in terms of

areas and linear approximation in terms of the control design variable are used

to construct a sequence of explicit approximate problems. DOT (Ref. 37) is

used as the optimizer.

Initially two control feedback gain matrices (Initial Design A and B) are

found by solving full order and 2 x 2 Riccati equations, respectively. Initial

design A is found by solving the full order Riccati equations with identity

weighting matrices for

[,q] = [/]M, see Eq. (4.3)).

both states and control forces ([Q]=[/-J2,v,

In Tables 11 and 12 initial feedback gains, natural

frequencies and closed-loop eigenvalues of the initial design A are given. Ini-

tial design B is obtained by solving 12 sets of 2 x 2 decoupled Riccati equations

for the initial control gains with identity control weighting matrix (

[R_] = [F] M or 7/s = I), and diagonal 2 x 2 state weighting matrices ([_2_] =

Diag ( co_, 1), i= 1, ..., 12, see Eq. (4.21)). The normalizing constants dis for

the right hand eigenvectors (see Eq. (5.8)) are chosen to be 1. Again in Tables

13 and 14 initial feedback gains, natural frequencies and closed-loop

eigenvalues are shown. In the following subsections 4 cases are investigated
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where different setsof behavior constraints and initial startup control gains are

used.

8.3.1 Inequality Constraints

In the first two cases, inequality behavior constraints are imposed on the

first damping ratio (_1 >- 0.15), and first two damped frequencies (coal >_ 1.341

and _a2 >- 1.6, see Ref. 19). Cases 1 and 2 start from the same member areas

but different control gains, namely, from initial design A and B, respectively.

Move limits used for the structural variables are fixed at 50 percent, and for

the control variable the move limit is reduced by 70 percent after each iteration

starting from 70 percent (case 1) and 50 percent (case 2).

Final member areas as well as the final value of the single control variable

are given in Table 10. The value of the control design variable represents the

ratio of the final feedback gain elements with respect to the initial gain ele-

ments, so the actual final feedback gain matrix is the initial feedback gain

matrix multiplied by the final control design variable in each case. Natural

frequencies and closed-loop eigenvalues of the final designs are given in Tables

15 and 16. In both cases the two damped frequency constraints are active at

the final design but the first modal damping factor is not critical (i.e., case 1,

0.16465 > 0.15 and case 2, 0.16745 > 0.15).

Iteration histories of cases 1 and 2 are similar to each other (see Table 19

and Figure 8). Total design masses include 8 units for the fixed nonstructural
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masses as well as the structural member masses.

in Figure 10.

Final truss areas are shown

Cases 1 and 2 show similar area distributions and final mass values (see

Figure 10) even though the final control gains are different. The final struc-

tural masses obtained here (14.52 and 14.12, see Table 10) are lower than the

result reported in Ref. 19 (18.56) by more than 20 percent. This reduction in

the final mass can be attributed primarily to integration of the structural and

control design variables, even though the most restrictive control variable

linking option is used. It may be noted that less restrictive control design

variable linking options do not reduce the final mass much further in this ex-

ample.

8.3.2 Equality Constraints

The next two cases (cases 3 and 4) are similar to cases 1 and 2 but have

different behavior constraints. One inequality constraint and five equality

constraints are imposed: the first 4 modes are constrained to have the same

damping ratios _t = 0.1093, i = i, ..., 4 ; and the first two damped frequencies

are constrained as follows, _a, = 1.34 and _ > 1.5 (see Refs. 18 and 15).

Each equality constraint is replaced by 2 inequality constraints that define

a small interval, namely 0.1093 < {_ < 0.11, i= 1,... ,4 and

1.34 < wa, < 1.345 , resulting in 11 inequality constraints. Cases 3 and 4
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start from initial designA and B, respectively,and both structural and control

designvariables have 70 percent move limits.

Final designs, natural frequencies, closed-loop eigenvalues are given in

Tables 10, 17 and 18. All the constraints are satisfied with less than 0.5 per-

cent constraint violation.

Iteration historiesare shown in Table 19and also in Figure 9.

areasare shown in Figure 10.

Final truss

Cases3 and 4 also show similar area distributions and final massvalues

(see Figure 10). And the final structural massesobtained here (15.18 and

14.94,seeTable 10)are lower than the results reported in in Ref. 18 (24.01)

by more than 35 percent. Betweencases3 and 4 it is seenthat case4 which

uses2 x 2 Riccati equation solutions to generate the startup gains converges

much faster (seeFigure 9).

8.4 EXAMPLE 3 - ANTENNA STRUCTURE: CDV LINKING (I)

The third example is an antenna structure consisting of eight aluminium

beams ( E = 7.3 x 106 N/cm 2, p = 2.77 x 10.3 kg/crn 3, v = 0.325) which have

thin walled hollow box beam cross sections (see Figure 11). This structure is

constrained to move vertically (Y - direction) only, so each nodal point has 3

degrees of freedom (translation, bending and torsion) resulting in the total 18

degrees of freedom (N = 18). Four translational actuators (,14 = 4) weighing
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4 kg each are attached to nodes 3, 5, 6 and 7. These actuators are oriented so

that the force they generate acts in the vertical direction (degrees of freedom

4, 10, 13 and 16). Two ramp type transient loads are applied to the node 3

at the same time. One is a vertical force _ (t) ) and the other is a torsional

moment _ ( t ) ) with respect to finite elements 1 and 2 which gives anti sym-

metric exitation. These loads are given as follows:

fl(t) = 333.3t N, ./2(t) = 10.0xfl (t) N.cm

for 0 < t _< 0.3 seconds, andf_ ( t )=f2( t)= 0 for t > 0.3 seconds (see Figure

1 !). Transient responses are considered for the time interval 0 < t _< 2 seconds

and 20 out of 36 complex modes are used to calculate the peak response values.

The normalizing constants d,'s for the right hand eigenvectors (see Eq. (5.8))

are chosen to be l0 s.

Flange and web thicknesses are constrained to be the same, so there are

three structural design variables for each finite element (B, l-I and T = T2 --T3,

see Option 11 of Table l). Structural linking is also used to make the structure

remain symmetric with respect to the XY plane, which results in the total 15

independent structural design variables. The initial structure is uniform (B

= H = 20.0 cm, T = 0.5 cm), and the side constraints are 10.0 cm < B, H

< 25.0 crn, and 0.1 cm < T _< 1.0 cm.

Move limits of 30 percent for both structural variables and control vari-

ables are used. Behavior constraints are imposed on: (1) the real part of all the

retained complex modes (a s < -0.5); (2) the fourth and fifth damped fre-
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quencies(_a, > 8.0 Hz, oga_ > 9.25 Hz ); (3) the peak displacement of nodes

2, 4, 5 and 7 (] q_(t)[ < 1.0 cm, i = 1,7, 10 and 16); and (4) the peak actuator

force (] uj (t) [ < 8.5N, j= 1, 2, 3 and 4).

Initial feedback gains are computed by solving 10 sets of 2 x 2 Riccati

equations with the control weighting coefficients y[s = 1/400 and the state

weighting matrices [Qi] = Diag ( _, 1 ) i = 1, ..., 10. In Figure 12, the initial

closed-loop eigenvalues ( ,;t,.= a_ + jcoa, ) obtained by solving 10 sets of 2 × 2

Riccati equations are compared with those obtained from a full order Riccati

equation solution (with weighting matrices l-Q] = Diag [ [K], [M] ] and

1
ER] =--[/] , see Eq. (4.3)), and as can be seen from the plot, these two

400

solution methods give almost the same values for the lowest 10 modes.

Row-wise and column-wise control design variable linking schemes are

investigated for this example. The maximum number of control design vari-

ables is relatively large (M × 2N = 144). In this example since M = 4 rather

than unity, there exist 10 distinct control design variable options. Ten different

control design variable linking schemes (see Table 2) are imposed on the the

same initial startup gains from the beginning.

Iteration histories are shown in Table 20 and Figure 13 and final struc-

tural designs are given in Table 21 and Figure 14. Design masses include the

fixed actuator mass (4 × 4 = 16 kg) as well as the variable structural mass.

As the freedom in the design space is reduced by imposing more restrictive

control design variable linking schemes (from case 1 to case 10), it can be
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clearly seenfrom the results that: (1) the number of independent control var-

iables in the optimization loop decreases(from 144to 1);(2) the optimum mass

increases(from 163.11kg to 206.06 kg); (3) the total number of iterations de-

creases and the convergence becomes more robust.

Even though there is more than 20 percent of difference in the optimum

mass between case 1 and case 10, all cases show a similar trend in the final

structural design. Namely, widths and depths of finite elements !, 2, 5 and 6

take on their upper bound values and thicknesses of elements 3, 4, 7, and 8

move to their lower bound values (see Table 21 and Figure 14).

Final mass values and active constraint sets for the final designs achieved

in cases 1-10 are summarized in Table 22. In all cases damped frequency, peak

response and peak control force constraints are active.

This example problem investigates the effect of row-wise and column-wise

linking schemes on: (1) the minimum mass achievable; and (2) convergence

characteristics of the optimization procedure. Generally as more linking is

imposed, the final mass increases and the design converges faster and more

smoothly. In Figure 15 optimum masses are compared with the number of

independent control variables according to the distinct control design variable

linking options chosen.
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8.5 EXAMPLE 4 - ANTENNA STRUCTURE: CDV LINKING (II)

This example is the same as the previous example (Example 3) except that

here the block type control design variable linking schemes introduced in sec-

tion 4.4 are investigated.

8.5. I Linking on E H ]

Cases 1-10 select participation coefficients a_'s of [H°]{o (see Eq. (4.33))

as design variables. These _'s are further linked so that in each case the

number of independent control design variables is different. The basic scheme

employed here is to treat the first (K- 1)variables _, ..., _x-_ as independent

and then link all the remaining variables _x = ctK+_ ..... a_o so that the total

number of independent control design variables after linking is K. For exam-

ple, when K= 1 there is only one independent design variable after linking,

since _ = _2 ..... a,0 • When K = 2 there are two independent design vari-

ables after linking, namely al and a2 = a3 ..... a_0 • Finally when K= 10

there will be ten independent design variables after linking, namely the partic-

ipation coefficients of the ten basis matrices in Eq. (4.33).

Iteration histories for cases 1-10 are given numerically in Table 23 and the

results for cases 1, 2, 4, 6 and 10 are presented graphically in Figure 16. Final

structural designs are displayed in Table 24 and in Figure 17.
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8.5.2 Linking on [Hp] and [Hv]

Cases l !-20 are the same as cases 1-10 except that the position and ve-

locity parts of the gain matrix are separated. Namely, the _i's of both [H_](i)

and [H_°]<i) (see Eq. (4.34)) are candidates for design variables, so that the

maximum number of independent control design variables after linking is

doubled from 10 to 20. Iteration histories and final structural designs are

given in Tables 25-26 and Figures 18-19.

As the freedom in the design space is increased by choosing more inde-

pendent control design variables (from case I to case 10 and from case I1 to

20), it can be clearly seen from the results that the optimum mass decreases.

Table 27 summarizes the critical constraint sets ( -0.03 < Gy < 0.0004) at the

final designs. The fourth damped frequency (cod,) , the peak displacement at

node 7 (q_6) and the peak control force at node 7 (u4) are critical in all 20 cases.

It is important to note that even with only one or two independent control

design variables (case 1 and case 11), the final objective mass values obtained

(206.06 kg and 204.16 kg) are about 15% lower than the result reported in

Ref. 25 (241.97 kg). This can be attributed to the fact that in Ref. 25 the

control gains are not independent design variables since, for any particular set

of structural design variables, they are determined from the solution of an

LQR subproblem.

In Figure 20 final masses are compared with the number of independent

control variables (case I of Example 3 which has 144 independent CDV's is
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also shown as a reference solution). Compared to the results for Example 3,

based on the column-wise or row-wise linking schemes, the new block type

(basis matrix) linking method (see section 4.4) gives much better results, in the

sense that with the same or fewer independent control design variables signif-

icantly lower final design mass can be obtained (compare Figures 15 and 20).

8.6 EXAMPLE 5 - ANTENNA STRUCTURE: ADDITIONAL
PROBLEMS

In this section additional problems using the same antenna structure as

in Examples 3 and 4 are investigated. All the cases in this section use the same

startup gains and the same control design variable linking scheme as in case

10 of Example 4 (namely, startup gains are calculated by solving 10 sets of 2

x 2 Riccati equations and _, ..., _10 are independent CDV's, see Eq. (4.33))

except for some additional constraints and/or special features.

8.6.1 Additional Constraints

Three cases are considered which have additional behavior constraints.

Case 1 is identical to case 10 of Example 4 except that this case has an addi-

tional constraint on the control effort such that CE _< 20 N 2 • see. The 4 x 4

control weighting matrix [RcE] is chosen to be the identity matrix (see Eq.

(5.21)). Case 2 is identical to case 10 of Example 4 except that in this case

additional constraints are imposed on the accelerations in the vertical direction

at nodes 2, 4,5and7(Iak(t)[_< 100cm]sec 2, k = 1,7, 10and 16). In case
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3 both control effort and accelerationconstraints describedaboveare imposed

at the sametime, in addition to all the other constraints.

Iteration histories and final structural dimensions are given numerically

in Tables 28-29. and displayed graphically in Figures 21 and 24. Table 36

showsfinal massand critical constraint set results for thesethree cases. Final

massvaluesare increasedcomparedwith that for case10of Example4 (170.92

kg) and this can be attributed primarily to the presence of additional behavior

constraints. It is interesting to note that in cases 2 and 3, where acceleration

constraints are considered and found active at the final design, a different type

of structural design is found, namely one where all the widths (B) take on their

upper bound values instead of the depths (H) (see Table 29. and Figure 24).

8.6.2 Updating Fixed Ratios and Truncation of the Gain Afatrices

Cases 4 and 5 are the same as case l0 of Example 4 except that feedback

gain matrices are modified in order to update the fixed ratios (case 4) or to

prevent higher uncontrolled modes from being destabilized (case 5). In case 4

the fixed ratios built into the initial startup gain matrix are updated by solving

2 x 2 Riccati equations again at the beginning of each iteration. When 2 x 2

Riccati equations are re-solved, weighting matrices are adjusted such that the

real parts of the closed-loop eigenvalues remain invariant between the updat-

ing (see Appendix C). In case 5 components of the feedback gain matrix which

excite uncontrolled higher modes are eliminated by using the method presented

in Appendix D.
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Iteration histories and final structural dimensions are given in Tables

30-31 and Figures 22 and 24. Final massesare similar to eachother, differing

by lessthan 3 percent difference. In Table 32 the final closed-loopeigenvalues

are compared with thoseof case 10of Example 4. Most of the uncontrolled

higher modes (modes 11 to 18) are unstable in case 10of Example 4, but in

cases4 and 5 they are marginally stable.

8.6.3 Lumped Alass Design Elements

In this subsection the actuator mass constraints described in section 5.5

are included and actuator masses are treated as independent design variables

(i.e., variable lumped mass design elements). The exponent in Eq. (5.33) is set

to be unity (c 2 = 1), namely, the relation between the peak control force and

the required actuator mass is assumed to be proportional with the coefficient

Ct.

Three runs are made with different values of c t. In case 6 the coefficient

c t is chosen such that an actuator of 4 kg mass can produce control force of

8.5 N (i.e., c_ = 4 kg / 8.5 N) to provide requirements similar to those in case

10 of Example 4, where constraints are given on the peak control forces (8.5

N) for the fixed mass actuators (4 kg). In case 7 more restrictive actuator mass

constraints are used such that actuators with 8 kg mass are needed to produce

control forces of 8.5 N (i.e., c_ = 8 kg / 8.5 N). And in case 8, c 1 is chosen such

that actuators of 2 kg mass are enough to generate control forces of 8.5 N (i.e.,

c l=2kg/8.5N).
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Iteration histories, final structural and actuator massvalues are given in

Tables 33-35 and Figures 23-24. As expected,case6 convergedto a final de-

sign similar to that found in case10of Example4, and cases7 and 8 converged

to higher and lower final objective massvalues, respectively,consistent with

the higher and lower values usedfor q.

Final massresults for all the casesin this section are summarized along

with the active constraint setsin Table 36.

8.7 EXAMPLE 6 - GRILLAGE STRUCTURE: CDV LINKING (II)

The final example treated here is the 4 by 6 planar grillage structure (see

Figure 25) which was previously studied in Refs. 9 and 25. It consists of a

lattice of I0 aluminium frame members placed on 2 foot centers and

cantilevered from two fixed supports by 2 foot long flexible beams (E =

10.5 × 106 psi, p = 0.1 lb/in 3, v = 0.3). Each solid rectangular member is 2.0

in wide (fixed) and has an initial depth (variable) of 0.25 in. The members are

oriented so that the width dimensions lie in the plane of the structure (XZ

plane). The grillage is modelled using 40 finite elements each of which is 2 foot

long and the total number of degrees of freedom is 72 (3 per node at 24 nodes).

A small amount of passive damping (c,vt = O, cK = 0.00005 , see Eq. (3.2)),

which gives passive damping ratios between 0.0059 % (Ist mode) and 0.36 %

(20th mode) to the uncontrolled initial structure, is assumed to exist. Four

torque actuators are placed to provide control torque in the directions as
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shown in Figure 25. The mass of each actuator (1.296 x 10-3 lb. sec2/in) is

modelled as a fixed nonstructural mass. Initial control gains are obtained by

solving 25 sets of 2 x 2 decoupled Riccati equations with diagonal control

weighting matrices [R,] = I
200 Diag [2, 2, 1, 1] and diagonal 2 x 2 state

weighting matrices EQ_] = Diag ( _, 1), i = I,..., 25 (see Eq. (4.21)). Initial

open-loop and closed-loop eigenvalues are given in Table 37. Transient re-

sponses are considered for a time period 0 _< t _< 3 seconds and the lowest 40

out of 144 complex modes are used.

The total mass is minimized and the grillage is subjected to a transient

loading at node 3 in the Y direction which is a half sine pulse of magnitude 0.2

lb and frequency 7 rad/sec. Structural design variable linking is used to im-

pose symmetry with respect to the XY plane on the structure and as a result

there are 8 independent structural design variables (see Figure 25). Lower and

upper limits on the member depths are 0.1 and 1.0 in, respectively. In this

example behavior constraints are imposed on: (1) the modal damping factors

of the first 20 modes (_ > 1%, i = 1,... ,20) ; (2) the transient displacements

at nodes 1-6, 7, 13, 19, 12, 18, and 24 in the Y - direction (i.e., q(t)<_ 0.2 in);

and (3) the transient control torques of all actuators (u (t) < 2.5 lb-in).

At the initial structural and control design, all the damping ratio and

control force constraints are satisfied, but transient displacement constraints

are infeasible by as much as 68 %. Hybrid approximation in terms of depths

of the members and linear approximation in terms of the control design vari-

ables are used to generate approximate optimization problems.
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In this example the number of elements in the feedback gain matrix is

very large (M x 2N = 4 x 2.72 = 576), so it is almost impossible to use all the

gain elements directly as independent design variables. Six cases are investi-

gated which are similar to cases 1-10 of Example 4, namely, the participation

coefficients e_'s of [H°](O (see Eq. (4.33)) are control system design variables.

These ei's are further linked so that in each case the number of independent

control design variables is different (see Table 38).

Iteration histories are given numerically in Table 40 and graphically in

Figure 26. Final member depths are given in Table 39 and Figure 27. In all

the cases depth of member 3 (node 13-18) has its lower bound value, and in

cases 5 and 6 depths of members 5 (node 1-19) and 10 (node 6-24) also have

lower bound values in addition to member 3. In Figure 28 final mass values

achieved in each of the six cases are compared with the number of independent

control design variables used. Similar observations to those made about pre-

vious examples can be made, namely, as the number of independent control

dcsign variables is increased from 1 to 20, the final objective mass value de-

creases (from 0.1191 to 0.1039, a 12.8 % reduction), but the total number of

analyses required for the convergence tends to increase. The final closed-loop

complex eigenvalues and modal damping factors are given in Table 41.

In all the cases transient displacement constraints at node 1 and the

transient control force constraints on actuator 3 and 4 are active at the final

design in addition to the critical damping ratio constraints (noted in Table 41).
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Chapter IX

CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

A method has been presented to integrate the design space for

structural/control system optimization problems in the case of linear state

feedback control.

When linear state feedback control is used in the integrated

structural/control optimization problem, the usual approach is to treat struc-

tural design variables as the only independent variables in the optimization

loop. The control gains are subordinated by using the solution to the linear

optimal control problem to implicitly represent the "optimal" control gains

corresponding to any given set of structural design variables. In this approach

the control gains are in effect dependent variables that can be determined for

any particular structural "plant" once the state and control weighting matrices

are specified. In other words, there is no design space freedom on the control

svstem design unless the state and control weighting matrices involve some

candidates for independent design variables which are free to change during

optimization. While some studies suggest to use coefficients of the weighting

matrices or control effort as independent design variables in optimization (see

Refs. 22, 23), this is a rather indirect approach and it does not represent a truly

integrated formulation of the structural/control system optimization problem.
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The method presentedhere treats elementsof the feedback gain matrix

directly as independent design variables together with the structural sizing

variables and actuator mass variables. In order to reduce the number of in-

dependent control design variables, the conventional structural design variable

linking idea is extended to the elements of the feedback gain matrix introduc-

ing several alternative linking schemes. Also a method for generating effective

initial startup control gains, which avoids the burden of solving the full order

Riccati equations (see Section 4.2), is presented.

The integrated structural/control system design problem is posed as a

general nonlinear mathematical programming problem. The objective is to

minimize the total mass of the integrated system. Constraints on dynamic

stability, damped frequency, control effort, peak transient displacement, ac-

celeration and control force, and actuator mass are considered. By assuming

that the external transient disturbances are represented in terms of a truncated

Fourier series and polynomial terms, all the transient responses and their sen-

sitivities are derived explicitly in closed form.

The general optimization problem is solved through the iterative con-

struction and solution of a sequence of explicit approximate problems based

on various approximation concepts including new control design variable link-

ing schemes. Each approximate problem is solved using the feasible direction

method implemented in CONMIN (Ref. 36) or the modified feasible direction

method in DOT (Ref. 37).
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The methodology summarized in this report has been implemented in a

research computer program, and numerical results for several iilustrative ex-

ample problems have been presented.

achieve convergence (based on a 0.1

The number of analyses required to

percent objective function diminishing

returns criterion) in most example problems ranged from 8 to 20 and signif-

icant improvement in the final design objective function values have been

achieved compared to previously reported results.

The antenna example was particularly useful as a test-bed for examining

the alternative control design variable linking schemes introduced here, since

it involves multiple actuators and moderate model size. These results confirm

that providing more design freedom by increasing the number of independent

control design variables (after linking) makes it possible to achieve lower ob-

jective function values. The trade-off between reduced objective function value

and increased control variable design freedom is clearly illustrated in Figure

15 (row-wise and column-wise CDV linking schems) and in Figure 20 (block

type CDV linking schemes). It should be noted that as the number of inde-

pendent control variables increases, the number of analyses required for con-

vergence tends to increase. Although the full extent of the benefit is problem

dependent, it is often possible to achieve significant reductions in the final ob-

jective function value by incorporating only a small number of independent

control design variables into the integrated design space.

The design variable linking idea has been successfully extended to inte-

grated structural/control optimization problems, based on full state linear



feedback control. In the context of this class of problems, design variable

linking makes it possible to treat structural design variables (SDV's), actuator

mass variables and control design variables (CDV's) simultaneously without

having to deal with prohibitively large numbers of design variables. Further-

more, the 2 × 2 decoup[ed Riccati equation solution method makes it possible

to obtain good startup values for the elements of the gain matrix without the

computational burden of having to solve a full order (2N x 2N) Riccati

equation. The method presented shows promise in the sense that it offers the

prospect of being able to exploit the benefits of full state feedback and true

integration without having to: (1) repeatedly solve large 2N x 2N Riccati

equations; (2) deal with extremely large numbers of independent design vari-

ables.

9.2 RECOMMENDATIONS

The method presented in this work can be used to optimize frame/truss

structures augmented by a linear state feedback controller. While this work

represents an important step towards the goal of integrating the structural and

the control system design processes, several improvements and extensions can

be made which will lead to increased efficiency and broader applicability.

Since the majority of the time for each design iteration lies in the analysis

(analysis and sensitivity analysis), reducing the total number of analyses re-

quired for the convergence will lead to significant reductions in the total cost.
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The key to fewer design iterations is the construction of more accurate ap-

proximate optimization problems so that larger move limits on the design var-

iables can be used during each stage. One way to improve the accuracy of the

approximations is to use intermediate response quantities such as modal ener-

gies when constructing explicit approximations for the real (a) and imaginary

(COd) parts of complex eigenvalues (see Ref. 9).

Another important factor in the total cost of optimization is the time re-

quired for each analysis. If the order of the model is reduced by using appro-

priate basis vectors (for example natural modes of the structure), the analysis

cost can be significantly reduced.

Currently a full order finite element model of the structure is used for the

controller design (in other words, elements of the feedback gain matrix, [H],

are optimized in the physical coordinate system) assuming all the dynamic

displacements and velocities are directly available. However, for practical

purposes an observer or a state estimator is required to reconstruct the state

values from the sensor outputs. When the observer is constructed for the full

order model the task is rather difficult, since it can increase the order of the

entire set of dynamic equations up to 4N. Once the original model is reduced

as mentioned above, building the observer becomes much more tractable.

When an observer is used, the same linking idea can be applied to the observer

gains. It should be noted that when the observer gains are also used as inde-

pendent design variables, various linking schemes can be used for the observer

gains. Furthermore, it will be necessary to consider additional constraints, for
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example the real parts of the observer poles should have values that are more

negative than the real parts of the controller poles (this will make the estimator

errors decay faster than the controlled states).

In Appendix C a method is presented for updating the fixed ratios be-

tween gain matrix elements (associated with a particular linking scheme), while

constraining the real parts of the closed-loop eigenvalues (e[s) to be unchanged

during the update. When modal damping ratios ({/s) are constrained rather

than G[s, the possibility of a similar updating scheme needs to be investigated.

Other areas for further investigation which will be important for the sol-

ution of more realistic problems include consideration of: (1) stress constraints

(both static and dynamic); (2) multiple loading conditions; (3) overdamped

modes (pure real closed-loop eigenvalues); (4) sensor/actuator location issues

andior observability and controllability requirements; and (5) sensor�actuator

time delav effects.
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Appendix A

ELEMENT STIFFNESS AND MASS MATRICES FOR SPACE FRAME

ELEMENT

For a 3 dimensional frame element shown in Figure 1 the vector of the

e-th element nodal degrees of freedom in the local coordinates is

{qe }T= [Ul, Vl, Wl, Oxl, 0yl, Ozl, u2, v2, w2, Ox2, 0y2, 0z2] (A.I)

where u, v, and w are displacements along x, y, and z axes, 0_,, 0y and 0 2 are

rotations about x, y, and z axes, respectively, and subscripts 1 and 2 represent

each end point I and 2. Then the element stiffness matrix is

A 0

1212/l 2

0 0 0 0

0 0 0 6U1

121y/l2 o -6Uz o

GJ/ E 0 0

4Iy 0

4Iy

Sym.

-d 0 0 0 0 0

0 -126/12 0 0 0 61..11

0 0 - 121y]l 2 0 - 61ill 0

0 0 0 - GJ/E 0 0

0 0 61yll 0 21y 0

0 61y/l 0 0 0 2I z

A 0 0 0 0 0

12lz/l 2 0 0 0 - 61z/l

121y/fl 0 61ill 0

GJ/E 0 0

4ly 0

412

 A.2)
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where E is the Young's modulus, G is the shear modulus, ,4 is the area, I is the

length, GJ is the torsional rigidity, and ly and I_ are the area moment of inertia

of the cross section with respect to the centroidal principal axes y and z, re-

spectively.

The element mass matrix is

[.l/]e = pal
420

140 0 0

156 0

156

0 0

0 0

0 - 22/

1401p/A 0

4l 2

_'m.

0 70 0 0 0 0

221 0 54 0 0 0

0 0 0 54 0 13/

o o o o 7o%/A o

0 0 0 - 131 0 - 312

4l 2 0 13l 0 0 0

140 0 0 0 0

156 0 0 0

156 0 221

1401p/A 0

4/2

0

131

0

0

0

_ 312

(A.3)
0

22l

0

0

0

412

where p is the mass density and Ip is the polar area moment of inertia of the

cross section.
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Appendix B

SOLUTION OF 2 x 2 RICCATI EQUATION

Equation (4.23) can be written in equivalent form as

_i'"i2 °2 l -_ 'i' "i2 + ' o
LPI2P_2J--O_i --Ci + -CiJLPi2 p22J Q_2

[' 11Pll P 2

i
1,

{ vi}TD2j _ [/-jfEo-I [b]T{vi = [-0]LPI2 p_2J

(z_.l)

where the 2 x 2 matrix [Pi] is positive definite (i.e., p{_ > 0, P_z > 0 and

Pl, P_2 - (P{2) 2 > 0) and Q{,, Q_2 > 0, 7_ > 0.

Since the above equation is symmetric, there are 3 independent scalar

equations as follows:

2 i
IVi(PI2) 2 + 2_i P12- Q[1 = 0 (B.2.a)

_, i)2 i iL°22 + 2ciP22- Q22- 2pt2 = 0 (B.2.b)

Ii, t i i i i 2 iPI2P22 -- Pll + ciPl2 + _i P22 = 0 (B.2.c)

where

! {vi}T[b][b]T{vi} > 0 (s.3)
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From Eq. (B.2),

2 ! 4 i

i --_i +-- N/°gi + lViQll (B.4.a)

p_2 = _vi

i - _, + ,/_/2 + [v__2_- 22 + 2 WiPl2

P22 -- l.Vi
(B.4.a)

i 1 2

P i I - iVi ci°gi

, ,)(<,,+ - + )q- [}'i "k_\ '+ [}tOll }ViQ_2 202-d _°4 + Iv,Oil

(B.4.c)

Since P_2 > 0 and ci> 0 the minus sign in front of the square root in Eq.

(B.4.b) is dropped and since P{1 > 0 the minus signs of Eq. (B.4.c) disappear

so that a uniquc solution for [Pi] can be determined as follows:

t

2 JO)/4
i -°°i + ._l + IviOll (B.5.a)

pt2 = Iv/

/2 • z i
i -- Ci + \/C_" + |V iQ29 + 2 l'liPl2

P22 = l,Vi
(g.5.b)

i 1 2

Pll -- IV i cic°i

(B.5.c)
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Appendix C

UPDATING FIXED RATIOS OF CONTROL GAINS

As mentioned in Section 4.2, solving for the initial feedback gain matrix

and imposing some kind of linking on the feedback gains fixes the relative va-

lues of those elements through the final stage. When the decoupled Riccati

equation solution method presented in subsection 4.2.2 is used, this problem

can be relaxed.

When the 2 x 2 Riccati equations are solved again for a different struc-

ture, there should be some rule to choose weighting matrices [O_] and [&] of

Eq. (4.21). Considering that the real parts of the eigenvalues ( _r_'s ) play an

important role on the dynamic responses as well as themselves are the behavior

constraints, the scheme presented here has focused on the continuity of the

cr_'s during the resolution of the feedback gain matrix.

First, the further assumption is made that the coupling effects of Eq.

(4.27) on the closed-loop eigenvalues are negligible. Then neglecting the right

hand side of Eq. (4.27), the i-th equation for the complex eigenvalue 2_ becomes

"_ + (Ci q- [V/P22)Ai-Jr- P12) : 0 (C.l)

where

_Vi = l__ { vi } T [b] Eb] T{ vi }
Yi

(c.2)
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i -_ + 4¢°_ + WiQ.il (c.3)

Pt2 =

x� .,/4i --ci + c2 + IViQi)2 - 2o02 + 2 c°i + WiQll
(c.4)

;:2 =

Then the i-th closed-loop eigenvalue 2i becomes (assuming underdamped mo-

tion)

)i = a i +_ j¢o 4

_ (ci + ,,ViP£2)+ j44(co2 + iViPi2)_(ci + igiP_2)2 (C.5)

2

From Eq. (C.2)-(C.5) noting that { v i }, [b], c9] and ci are fixed for a given

structure, the complex eigenvalues 2, can be assigned arbitrarily by adjusting

I_, P{2 and P_2 or equivalently ys, Q{1 and Q_2.

The ratio between the state weighting matrix [(2,] = Diag (Q{_, Q_2) and

the control weighting matrix [R,] = y_ [/-] determines the relative magnitude

of states and control forces. This means that the ratio between [Q_] and [&]

(or Q{_, Q_2 and y,.) will determine the damping effect in the i-th mode, so by

changing only )'_ the real part of the closed-loop eigenvalue can be assigned

(within some bounds).

The foregoing observations suggest that for some iterations (for example

for every K iterations) the fixed ratios within the feedback gain matrix can be

updated by changing the y[s in a manner which forces the real part of the
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closed-loop eigenvaluesto coincide with the approximate real part of the ei-

genvalues ( a/s ) from the previous iteration, i.e. from Eqs. (C.5) and (C.4)

O-i = --

i
c i + WiP22

l x/c2 Qi
"_',J i + IVi 22- 2to_ + 2# 4 + WiQI 1

(C.6)

OF

IVi = I X + 2 QI1 2 QII X + I, 22j + _41, 22J
[ Qi '_2k 22,/

(c.7)

where

,2)X = O-_2 4ai + 2co i - c

Then from Eq. (C.2)

1_.[_. { vi } T Eb] [b] T { vi} (C.8)
7i = Wi

With a new set of y/s the decoupled Riccati equations are solved again so

that the relative values of the elements in the gain matrix are updated accord-

ing to the changing structure preserving continuity of the real parts of the

complex eigenvalues between the iterations. When all the yi's converge to the

previous values, this updating option can be turned off.
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Appendix D

ABOUT SPILLOVER EFFECT

In this appendix the existence of spillover effect (see Ref. 38) of the for-

mulation used in this study is investigated. Consider Eqs. (4.1) and (3.9) again

for convenience

[M]{/l} + [C]{q} + [K]{q} = [b]{u} (D.I)

{,, } = - [np] { q } - [Hv] {O} (D.2)

The nodal degree of freedom vector, { q } , can be written without any trun-

cation as follows (compare with Eq. (4.9)):

{q} = [Vc]{Z C} + [Vw]{Z U} (D.3)

where { Zc } is the r x 1 controlled normal coordinate vector, [ Vc] is the N x r

eigcnmatrix consisting of the controlled r normal eigenvectors, { z U } is the

(N-r)xl uncontrolled normal coordinate vector, and [V u] is the

:V x (N - r) eigenmatrix corresponding to uncontrolled modes { Zu } •

Eigenmatrices [ Vc] and [ Vu] in Eq. (D.3) can be normalized such that

[Vc] r[M] IVc] = [r],

[ Vc]r[M] [ v u] = [0],

[WU]T[M] [Wu] = [Z]

[wu]T[M] [Vc] = [0]
(D.4)

and
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[vc]V[c] [Vc] = [cc],

[vu] r [c] [v u] = [Cu],

[Vc]r[x] [vc] = [A c]

[vu] T[_ [vu] = [A u]
(D.5)

Substituting Eq. (D.3) into Eq. (D.I) and premultiplying by [Vc] T and [Vu]r

results in

{ 2c} + [Cc] { _c} + [Ac] { Zc} = [Vc] T[b] { u } (D.6)

Zu } + [Cu] { Zu } + [Au]{Zu} = [Vu] T [b] { u } (D7)

On the right hand side of Eq. (D.7), [ vu]r [b] 4: [0], which means there ex-

ists control spillover.

Substituting Eq. (D.3) into Eq. (D.2) leads to

LU} = - ([Hp] [Vc] { zC} + [Hv] [VC] { _C})

([Hp] IV u] { _U} + [H_] IV u] { _L;})
(D.8)

On the right hand side of Eq. (D.8), those matrices in front of the uncontrolled

modes are not zero (i.e., [Hp] [Vu] ¢ [0], [Hv] [Vu] ¢ [0] ) which can be

interpreted as observation spillover.

As can be seen from Eqs. (D.7) and (D.8), there exist both control and

observation spillover. According to Ref. 38, the closed-loop system has po-

tential instability when the system has both observation and control spillover

and it is more important to eliminate observation spillover in order to avoid

instability. Therefore, the desired control input, { u*} , should contain only

controlled modes, { z c } , namely
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{u*} =- [Hp][Vc] { Zc} - [Hv]EVc] { _C} (D.9)

Premultiplying [Vc]T [M] to Eq. (D.3) and using relations in Eq. (D.4) results

in

{ z C} = EVc] r[M] { q } (D.10)

Substituting Eq. (D.10) into Eq. (D.9) gives

{u*} = - [Lip] [Vc] [Vc]T[M] { q } -

=- [Hp] { q } - [Hv]{q }

[Hv] [Vc] [Vc]TEM] { il }

(D.11)

where

[H;] = [Hp] [Vc] [Vc] T [M] (D.12)

and

[H_] = [Hv] [Vc] [Vc]TEM] (D.13)

In summary, destabilization of uncontrolled higher modes can be pre-

vented by using the truncated feedback gain matrices shown above since these

matrices are orthogonal to the uncontrolled higher modes [ Vu] and will elimi-

nate observation spillover.
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Appendix E

CLOSED FORM SOLUTION OF TRANSIENT ANALYSIS

E.I CLOSED FORM RESPONSE CALCULATION

Eq. (5.17) can be written in explicit closed form as

,1,(t)
N o Np /

{ _'i}TEE] E (ICk{FC}k + ISk {FS}k) * _ IPp{FP}p

k=l p=0

(E._)
+ e _'it r/i (0) when 0 <_ t <_ tf

rli(t ) = e)'i(t-tf)rli( tf) when t > tf

where

' eJ.i(t -r)IC k =__ cosQkrdZ

= 1 (2i e/_i t_ + _ + o__i._,- _,co_._,)
(E.2)

IS k
" e_i (t -z )

= sin _k z dr

_ 1 (f_k e)'it - f_k cos_k t -- 2 i sin_k t)
_ + _

(E.3)

t e).i(t-r) zPIPp =- dr
(E.4)

When p = 0 (which corresponds to a step input),
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IP o =_ Iote ;'_('-*) & = l(e;;t-2i 1) (E.5)

and when p = 1 (which corresponds to a ramp input),

IP 1 - T dr = e ai - t )ti
(E.6)

The above expressions can be derived by integration by parts. It should be

noted that for a given set of design variables, 7;(ti) needs to be calculated

only once and for t > tl the second formula of Eq. (E.I) is used.

E.2 CLOSED FORM RESPONSE SENSITIVITY CALCULATION

Differentiating Eq. (E.I) with respect to a yields

&li(t)

X

( a{ 4'i}r )

( *\_(ICk{rC}k + ISk{FS}k)+k=l
y' tep{rP/p

p=O

+ {_i}T[E]

× o--7-{FC}k + O----7{FS}k

02i e)_it e,_.it Orli(O)
+ _ t ,_(o) + a--7-"

Nt, 3lPp

+_ _,-_
p=O

_{FP}p) (E'7)

when Ogt<9-

&;(t)
OOt

c_'l----L/(t-9)e_"(t- 9)n_(tf) + e )i(t-tf) Orli( tf) , when t > tf
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where

_ICk
_- 0 I" e )'i(t-r) cos _k r dr

& J0

02i IOt "
= _ e,_t (t-r) (t - 3) cos f'2k r dr

0_

__ 02.__...£ 1 (t)tie).it + e),it _ cos _ k t 22i ICk)

(E.8)

OIS k

OOt

_- c3 I' e ;'_(t-r) sin _k r dr
0a Jo

c_2i IO e2i(t-z)(t - r) sin _k r dr=

_ 632i 1 (t _k e2it _ sin (2kt
20o_ _k +

22 i ISk)

(E.9)

_IP o

-- OotOIor e).i(t-Z) dr

02i fote2i(t-z)(t r)dz0_

= _ t 2i e _i +

_[P 1

dot -- Oot@IOre;'i(t-r)r dr

O2i fa" e;'i (t-_) (t - r) r dr= -Tg
KI

& 22

(E.ll)

Again the above expressions can be derived using integration by parts.
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Option

I0

11

12

13

TABLE 1

Choice of Structural Design Variables

Design
Variables

i

B and II

II

tt

B, I I, T2 and T3

T2 and T3

l.inking within
an Element

NA

B ==tl

NA

NA

NA

NA

T2 and T3

T3

"I"2

T3

B, I1 and T3

II, T2 and T3

It and T3

B = :tT3, ll = fiT2

T2 = a T3

NA

NA

T2 = a T3

B =all

B = :t II, T2 = fiT3

_, fl " preassigned constants
NA ' no linking within a cross section.
n.b. • options 5-13 apply to the box beam type element only. (see Fi_mare 1)
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TABLE 2

Control Design Variable Linking Options

Option Description

l

totally unlinked

10

i

[Hp] fixed,
[ tf,] unfinked

columns of [H]
linked

[Hp] fixed,
columns of [t1.] linked

rows of [tb]
and [tt.] linked

rows of [tt]
linked

[Hp] fixed,
rows of[ll,] linked

[H A, [tZ,]
linked

[ Hp] fixed,
[tt,] linked

[H] linked

Design
Variables

elements of [tt]

elements of [H.]

coefficients of

columns of [H]

coefficients of
columns of [H,]

coefficients of

rows of [Hp] and [tf,]

coefficients of
rows of [tf]

coefficients of
rows of [tt,]

coefficients of

[HA, [ii,]

coefficient of [tf,]

coefficient of [tt]

M x 2N

Nix N

2N

N

2M

M

M

[H] : M x 2N feedback gain matrix
[Hp] : position part of [H] ( M × N )
[Hv] • velocity part of [HI ( M x N )
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:_nalysis

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

TABLE 3

Iteration History for Example 1: Cantilever Beam, Cases 1-5

Control Design Variable Linking (I)

Total Mass(kg)

Case 1 Case 2 Case 3 Case 4 Case 5

2141.6 2141.6 2141.6 2141.6
1351.1 1352.1 1351.4 1453.5
833.30 841.33 841.18 956.15
595.18 896.81 598.67 658.18
502.20 621.41 502.45 533.76
461.45 519.07 460.13 485.52
444.36 479.59 435.03 472.54
428.04 467.22 428.93 472.54
427.74 463.20 428.93 472.54
423.71 455.93 428.93
423.70 454.28
423.67 454.18

453.07
452.20
451.95
451.94

2141.6
1453.6
956.45
658.57
534.30
486.13
473.19
473.19
473.19

TABLE 4

Final Cross Sectional Dimensions for Example 1" Cantilever Beam, Cases 1-5

Control Design Variable Linking (I)

Final Cross Sectional Dimensions(cm)

Case 1 Case 2 Case 3 Case 4

T2
T3

0.5046 0.6356 0.5290 0.73 ! 0
0.5000* 0.5000* 0.5000* 0.5000*

indicates lower bound value

Case 5

i

0.7340
0.5000*
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CDV
Linking
Option*

No. of

Total
Analyses

Final
Active

Constraints

Number
of

CDV

Final
.Mass
(kg)

TABLE 5

Summary of Example 1: Cantilever Beam, Cases 1-5

Control Design Variable Linking (I)

|

Case 1 Case 2 Case 3 Case 4 Case 5

lot3 2or4 5or8 7or9 6or 10

12 16 10 9 9

cod q u to_ u _d q u a_o_o_ _'1o (/')d

40 20 2 1 !

423.67 451.94 428.93 472.54 473.19

* " See Table 2
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TABLE 6

Iteration History for Example 1" Cantilever Beam, Cases 6-9
Different Initial Feedback Gains

Total Mass(kg)

Analysis

1
2
3
4
5
6
7
8
9

10
ll
12

Case 6 Case 7 Case 8 Case 9

2141.6 2141.6 2141.6 2141.6
1891.0 1433.9 2151.5 1559.4
927.12 1035.4 1644.0 1091.8
549.12 774.95 1170.6 780.60
512.22 595.87 836.46 582.35
465.22 491.20 622.14 456.71
437.93 458.57 489.56 435.84
429.40 431.84 _444.44 428.09
429.40 431.84 434.64 427.81
429.40 431.84 434.64 428.63

434.64 428.63
428.63

TABLE 7

Final Cross Sectional Dimensions for Example 1" Cantilever Beam, Cases 6-9
Different Initial Feedback Gains

Final Cross Sectional Dimensions(cm)

T2
T3

Case 6 Case 7 Case 8 Case 9

0.5311 0.5424 0.5554 0.5276
0.5000 ° 0.50000 0.500if' 0.500if'

° indicates lower bound value
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TABLE 8

Summary of Example 1: Cantilever Beam, Cases 6-9
Different Initial Feedback Gains

Initial Gains

No. of

Unlinked
Iterations

No. of
Total

Analyses

Final
Active

Constraints

Final
Mass
(kg)

Case 6 Case 7 Case 8 Case 9

i

[HI = [0] direct output Full Riccati 2 × 2 Riccati

3 3 3 3

10 10 11 12

_,_qu w a q u ajo _o_ q u o_ q u

429.40 431.84 434.64 428.63
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TABLE 9

Nodal Point Coordinates for Example 2: ACOSS FOUR

Node

1

2

3

4

5

6

7

8

9

10

X Y Z*

0.0 0.0 8.165

-5.0 -2.8868 0.0

5.0 -2.8868 0.0

0.0 5.7735 0.0

-6.0 - 1.1547 -2.0

-4.0 -4.6188 -2.0

4.0 -4.6188 -2.0

6.0 - 1.1547 -2.0

-2.0 5.7735 -2.0

2.0 5.7735 -2.0

, m

* • the origin (0,0,0) lies in the plane of nodes 2,3 and 4
(2 units shift in Z coordinate origin from Ref. 11)

104



Initial and

TABLE 10

Final CrossSectionalAreas of Truss Elementsfor Example2:
ACOSS FOUR

Element

(Nodes)

I (1-2)

2 (2-3)

3 (1-3)

4 (1-4)

5 (2-4)

6 (3-4)

7 (2-5)

8 (2-6)

9 (3-7)

]0 (3-8)

11 (4-9)

12 (4-10)

Structural
Mass

Control

Design
Variable

Number of

Analyses
Required

Initial Final Final Final Final
A and B Case 1 Case 2 Case 3 Case 4

1000. 258.2 251.7 258.6 290.4

1000. 164.8 162.6 260,1 243.8

100. 153.3 149.3 168.5 134.9

100. 152.4 149.4 101.4 I31.8

1000. 165.8 162.6 243.5 245.0

1000. 282.8 274.5 291.2 286.9

100. 162.4 156.4 76.2 78.9

100. 161.6 156.5 137.9 72.8

100. 102.9 82.0 110.3 98.4

100. 219.8 225.1 102.1 110.2

100. 103.8 81.9 94.2 99.6

100. 219.6 225.1 166.8 107.9

43.697 14.518 14.124 15.177 14.935

!.0 5.2283* 2.8781'* 2.9479* 1.5385'*

11 12 13 8

* : represents the ratio of the final feedback gain with respect to
the initial gain of Design A (See Table 11)

** : represents the ratio of the final feedback gain with respect to
the initial gain of Design B (See Table 13)
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TABLE 11

Feedback Gains of Initial Design A for Example 2: ACOSS FOUR

(Feedback Gain Calculated by Solving Full Order Riccati Equations

with Weighting Matrices [Q] = [/]2u and [R] = [/-Jm)

Position Gains

Node Direction

X
1 Y

Z

X
2 Y

Z

X
3 Y

Z

X
4 Y

Z

Actuator 1 Actuator 2 Actuator 3 Actuator 4 Actuator 5 Actuator 6

-0.17112 -0.15531 0.04389 -0.00572 0.01124 -0.02256
-0.08062 -0.10785 -0.01233 -0.02279 0.04415 0.00646
-0.23050 -0.23037 -0.00667 -0.15163 -0.00672 -0.15156

0.50329 0.35341 -0.26035 0.19237 -0.15928 0.15346
0.11764 0.37713 -0.03369 0.06621 -0.20857 0.13342
0.27425 0.27412 -0.14808 0.04077 -0.14804 0.04074

-0.37381 -0.12643 0.07734 -0.17505 -0.02042 -0.01554
0.21863 0.23719 0.14667 -0.09655 0.07495 -0.13230
0.07594 0.03240 0.08307 0.05708 0.04116 -0.02841

0.14220 0.00236 0.05463 -0.12230 0.16562 -0.17110
-0.22824 -0.43309 -0.05519 0.05272 -0.00637 -0.10331
0.03239 0.07595 0.04116 -0.02840 0.08307 0.05707

Velocity Gains

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

0.33432 -0.01836 -0.23952 -0.53569 0.34669 -0.30211
-0.21421 0.39664 0.53864 -0.03958 -0.47675 -0.44411
-0.19287 -0.19284 0.16896 0.08101 0.16895 0.08103

0.84740 -0.10095 0.01224 0.01220 0.12992 -0.09151
-0.60568 1.03660 0.14295 -0.11270 -0.06087 0.06691
1.12920 1.12920 -0.01356 0.01441 -0.01355 0.01440

-0.08273 -0.16078 0.47486 -0.52061 0.17640 -0.17019
-0.09619 0.20450 0.85744 -0.81356 0.05456 -0.05683
-0.00656 0.00742 0.84300 0.82788 0.01139 0.01026

0.09672 -0.12468 0.13546 -0.13433 0.97992 -0.96481
-0.24152 -0.02350 0.12552 -0.11899 -0.01753 -0.04402
0.00741 -0.00656 0.01139 0.01026 0.84299 0.82788
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TABLE 12

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios

for Initial Design A in Example 2: ACOSS FOUR

Mode

Number

1

2

3

4

5

6

7

8

9

10

11

12

Natural Closed-loop Damping
Frequency Eigenvalue Ratio

(_) (a +j_,,) (_)

|11 i

1.8010 -0.05196 + j 1.34173 0.03869

2.7715 -0.07716 + j 1.66395 0.04632

8.3563 -0.15106 + j 2.88766 0.05224

8.7465 -0.16782 + j 2.95366 0.05673

11.548 -0.20178 + j 3.39314 0.05936

17.678 -0.25698 ___+j 4.19752 0.06111

21.735 -0.25094 + j 4.65595 0.05382

22.613 -0.24350 + i 4.74958 0.05120

72.923 -0.20643 + j 8.53709 0.02417

85.574 -0.19523 + j 9.24860 0.02110

105.78 -0.15129 + j10.28381 0.01471

166.55 -0.05871 4- j12.90510 0.00455
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TABLE 13

Feedback Gains of Initial Design B for Example 2: ACOSS FOUR

(Feedback Gain Calculated by Solving 12 Sets of 2 x 2 Riccati Equations
with Weighting Matrices [Qi] = Diag (co_, 1) and [Ri] = [/-]M)

Position Gains

Node Direction

X
1 Y

Z

X
2 Y

Z

X
3 Y

Z

X
4 Y

Z

Actuator 1 Actuator 2 Actuator 3 Actuator 4 Actuator 5 Actuator 6

-0.00027 -0.00040 -0.00009 -0.00015 0.00008 -0.00011
-0.00031 -0.00008 0.00015 -0.00004 -0.00015 -0.00011
-0.00078 -0.00078 -0.00005 0.00001 -0.00005 0.00001

0.17636 -0.17577 -0.00057 0.00059 -0.00008 0.00009
-0.30476 0.30509 0.00024 -0.00023 -0.00062 0.00063
0.35224 0.35224 0.00014 -0.00019 0.00014 -0.00019

-0.00044 0,00087 0.17609 -0.17614 -0.00008 0.00013
-0.00013 0.00026 0.30499 -0.30492 0.00070 -0.00069
-0.00003 -0.00003 0.35173 0.35169 0.00010 0.00006

0.00066 -0.00033 0.00057 -0.00053 0.35215 -0.35211
0.00062 -0.00031 -0.00042 0.00046 -0.00001 -0.00007

-0.00003 -0.00003 0.00010 0.00006 0.35173 0.35169

2

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

Velocity Gains

0.48833 -0.05431 -0.35118 -0.87244 0.55421 -0.50961
-0.34465 0.59525 0.84274 -0.08477 -0.72551 -0.71314
-0.39794 -0.39787 0.30804 0.11272 0.30801 0.11277

1.63810 -0.19273 0.00299 0.07450 0.21374 -0.13354
-1.16800 2.00250 0.24509 -0.19719 -0.11992 0.16311
2.18680 2.18680 -0.03887 0.05238 -0.03886 0.05237

-0.22706 -0.30616 0.94046 -0.99591 0.30379 -0.29970
-0.16336 0.36588 1.64910 -1.58520 0.14310 -0.11673
0.00539 0.00812 1.62040 1.59280 0.03972 0.01485

0.16378 -0.25501 0.27585 -0.25098 1.89820 -1.87060
-0.44813 -0.11487 0.19162 -0.20122 -0.01018 -0.06976
0.00811 0.00541 0.03972 0.01484 1.62040 1.59280
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TABLE 14

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios

for Initial Design B in Example 2: ACOSS FOUR

Mode
Number

1

2

3

4

5

6

7

8

9

10

11

12

Natural Closed-loop Damping
Frequency Eigenvalue Ratio

(_o_) (,_ ± j o_,) (0

1.8010 -0.08264 + j 1.34786 0.06120

2.7715 -0.13181 + j 1.67555 0.07843

8.3563 -0.28566 + j 2.90017 0.09802

8.7465 -0.31846 + j 2.96470 0.10680

I1.548 -0.38801 +i 3.40683 0.11316

17.678 -0.49915 4- i 4.20444 0.11789

21.735 -0.49119 + j 4.64576 0.10514

22.613 -0.47814 4- j 4.72990 0.10058

72.923 -0.41002 + j 8.50867 0.04813

85.574 -0.38734 + j 9.21960 0.04198

105.78 -0.30212 4- j 10.26629 0.02942

166.55 -0.11446 4- i 12.88505 0.00888
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TABLE 15

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios

for Final Design of Case 1 in Example 2: ACOSS FOUR

Mode
Number

1

2

3

4

5

6

7

8

9

10

II

12

Natural Closed-loop Damping
Frequency Eigenvalue Ratio

(cos) (a 4- j ¢%) (_)

1.7917 -0.22511 + j 1.34857' 0.16465

2.522i -0.16755 + i 1.59354' 0.10456

7.7894 -0.45422 + j 2.90936 0.15426

8.3369 -0.17110 + i 2.91693 0.05856

13.329 -0.26529 + i 3.72512 0.07104

21.781 - 1.31127 + ] 4.39815 0.28571

24.304 - 1.06505 + j 4.73268 0.21955

33.428 - 1.64435 + j 5.54856 0.28414

37.101 -0.32458 + j 6.05921 0.05349

44.278 -1.72945 + j 6.22344 0.26775

45.840 - 1.47318 __+j 6.40279 0.22423

48.746 - 1.69234 + j 6.67545 0.24574

* ' critical constraints
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TABLE 16

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios

fl)r Final Design of Case 2 in Example 2: ACOSS FOUR

Mode
Numbcr

1

-)

3

4

5

6

7

S

9

10

11

12

* " critical constraints

Natural Closed-loop Damping
Frequency Eigenvalue Ratio

(co') (_ _+j _o_) (0

1.6850 -0.22690 _+ j 1.33431 * 0.16764

2.4551 -0.15342 + j 1.59436' 0.09579

6.8799 -0.62833 + j 2.90255 0.21157

8. 1448 -0.16614 + j 2.92190 0.05677

13.008 -0.25024 ___j 3.71749 0.06716

18.175 - 1.38884 4- j 3.96390 0.33066

22.033 -1.09006 + i 4.23768 0.24912

32,395 -1.76219 + i 5,42404 0.30899

35.531 -0.21716 + i 5.96693 0.03637

44.649 -1.92262 + i 6.05257 0.30275

44.q46 -1.57552 + i 6.45964 0.23696

49.007 - 1.81167 + j 6.66486 0.26231
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TABLE 17

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios

for Final Design of Case 3 in Example 2: ACOSS FOUR

Mode
Number

1

3

4

5

6

7

9

tO

11

12

Natural Closed-loop Damping
Frequency Eigenvalue Ratio

(_2) (o"+ j_) (_)

1.7695 -0.14827 + j 1.33906' 0.11006'

2.2701 -0.16543 _ J 1.49824' 0.10975*

6.8825 -0.29043 + j 2.65129 0. 10889*

8.3137 -0.32120 + j 2.91758 0.10943*

10.390 -0.25878 + J 3.22166 0.08007

18.333 -0.73126 + i 4.20431 0.17136

23.871 -0.76931 + i 4.79604 0. 15838

27.481 -0.52110 __+j 5.18450 (). fO001

32.038 -0.73261 __+j 5.56344 0.13056

34.259 -0.88063 + j 5.78363 O. 15053

40.272 -0.88313 ++_i 6.29546 f_.13892

47.972 -0.23151 _+ j 6.78034 0.03412

* • critical constraints
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TABLE 18

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios

for Final Design of Case 4 in Example 2: ACOSS FOUR

3,lode
Number

l

3

4

5

6

7

,S

0

I0

l1

12

* • critical constraints

Natural Closed-loop Damping
Frequency Eigenvalue Ratio

(co2) (a _+j coa) (_)

1.7527 -0.14811 + i 1.33743' O. 11007'

2.1804 -0.16354 + j 1.49360' 0.10884'

6.7730 -0.29237 + j 2.65644 O. 10940*

7.5292 -0.30754 _+ j 2.81009 O. 10879*

8.8137 -0.41410 _+ j 3.02121 0.13579

16.516 -0.74291 _+ i 4.02792 0.18138

23.311 -0.77221 + j 4.77106 t).15977

24.868 -0.69572 _+ j 4.96686 013872

27.885 -11.65279 + i 5.20579 O, 12442

30.156 -0.78313 + J 5.34630 0.14493

36.127 -0.76335 + j 5.85341 O. 12932

47.773 -0.24766 + j 6.76245 0.03660
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TABLE 19

Iteration History fl_r Example2: ACOSS FOUR, Casesi-4

Total Mass(*)

Analysis

1

2

3

4

5

6

7

10

11

12

13

Case 1 Case 2 Case 3 Case 4

51.6970 51.6970 51.6970 51.6970

45.2192 47.0839 50.0280 25.6928

40.5850 43.4828 33.0527 24.2318

29.9721 32.6651 31.6158 23.3435

23.9877 25.7153 28.1675 22.9081

22.8540 22.4004 26.2944 22.9354

22.5623 22.3012 25.0935 22.9354

22.4889 22.2166 24.1897 22.9354

22.5179 22.1845 23.6746

22.5179 22.1586 23.6389

22.5179 22.1404 23.1769

22.1236 23.1769

23.1769

* ' total mass includes 8 units of nonstructural mass in addition to structural mass.
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TABLE 20

Iteration Historv for Example3: Antenna Structure, Cases1-10
Control DesignVariable Linking (I)

Total Mass(kg)

Analysis

I
2
3
4

6
7
S
9

10
11
12
13
14
15
16
17
18
19

Case I Case 2 Case 3 Case 4 Case 5

(144') (72') (36*) (18') (8')

502.14 502.14 502.14 502.14 502.14
462.20 462.39 466.52 462.25 455.96
345.34 343.47 349.71 351.13 359.45
254.17 259.92 261.19 263.19 283.10
213.91 218.31 235.33 230.47 231.57
184. ! 1 191.87 210.26 213.59 212.83
174.34 176, 98 199.19 200.50 204.21
168.93 170.94 192.61 195.82 200.82
169.35 167.01 193.88 194.60 198,91
165.61 166.99 190.74 192.95 198.71
164.42 165.43 188.11 191.28 198.45
164.08 165.03 185.03 189.94 198.01
164.17 164.84 185.75 189.03 197.42
163.99 164.64 184.26 187.51 196.93
163.76 164.39 182.27 186.92 196.46
163.20 164.19 180.79 186.66 196.32
163.10 164.10 179.90 186.50 196.31
163.11 164.05 179.79 186.34

179.64

Analysis

1

3
4
5
6
7
8

10

I1
12

Case 6 Case 7 Case 8 Case 9 Case 10

(4') (49 (29 (1 *) (l *)

502.14 502.14 502.14 502.14 502.14
469.64 465.14 485.24 474.45 484.61
367.65 361.18 383.18 374.55 387.64
293.90 280.72 302.66 291.97 297.69
237.33 231.87 241.31 234.26 240.14
218.09 212.22 216.56 214.15 215.05
205.11 204.82 208.12 207.01 208.60
201.28 201.05 206.07 207.00 206.33
200.51 200.69 205.78 204.60 206.07
200.35 200.63 204.22 204.47 206.06
200.27 200.59 204.19 204.46 206.06

204.16

* " number of independent control design variables
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TABLE 21

Final Cross SectionalDimensionsfor Example 3: Antenna Structure, Cases1-10
Control DesignVariable Linking (I)

Final Cross Sectional Dimensions(cm)

Case

B
1 1!

T

13
2 tl

T

B
3 II

"I"

13
4 lI

"1"

B
5 II

"I"

B
6 II

F

B
7 II

"i"

B
8 tl

B
9 It

T

B
10 II

Element Element Element Element Element

I 2 3,4 5,6 7,8

25.00 b 25.00 b 23.24 25.00 b 19,31
25.00 b 25.00 b 25.00 b 25.00 b 25.00 t'
0.1001Y 0. ! 108 0. 1000 ° 0.1935 0.1000 °

25.00 b 25.00 b 24.11 25.00 b 18.68
25.00 b 25.00 b 25.00 b 25.00 b 24.99
0.1046 0.1129 0.1001Y 0.1908 0.1001Y

25.00 b 25.00 b 17.68 25.00 b 18.87
25.00 b 25.00 _ 24.41 25.00 b 25.00 b
0.1393 0.1263 0.100(Y' 0.2202 0.1000"

25.00 b 25.00 b 16.67 25.00 b 18.56
25.00 b 25.00 b 21.92 25.00 b 25,00 b

0.1454 0.1213 0.1001Y 0.2490 0.1001Y

25.00 b 25.00 b 21.55 25.00 b 13.82
25.00 b 25.00 b 25.00 b 25.00 b 25,00 b

0.1748 0.1152 0.1000 ° 0.2526 0.1000 °

25.00 b 25.00 b 22.04 25.00 b 10.84
25.00 b 25.00 b 25.00 b 25.00 b 24.83

0.2166 0,1496 0,1000 ° 0.2134 0.1000 °

25.00 b 25.00 b 20.95 25.00 b 12.08
25.00 b 25.00 b 25.00 b 25.00 b 24.86

0.2054 0.1360 0.1000 ° 0.2323 0.1001Y'

25.00 b 25.00 b 19.04 25.00 b 14.43
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b

0.1790 0.1115 0.1000 ° 0.2832 0.1000 °

25.00 b 25.00 b 18.47 25.00 b 14.50
25.00 b 25.00 b 25.00 b 25.0@ 25.00 _

0.1752 0.1129 0.1000" 0.2883 0. I001Y

25.00 b 25.00 b 19.13 25.00 b 15.80
25.00 b 25.00 b 25.00 b 25.0@ 25.00 b

0.1904 0.1000" 0.100if' 0.2815 0.1000 °

° indicates Iower bound value b indicates upper bound value
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Case

Number(*)

1(144)

2 (72)

3 (36)

4 (Is)

5 (8)

6 (4)

7 (4)

s (2)

9 (1)

10 (l)

TABLE 22

Summary of Example 3: Antenna Structure, Cases 1-10

Control Design Variable Linking (I)

Final Mass, kg
(**)

163.11(18)

164.o5(18)

179.64(19)

Re (2)

186.34( 1S)

Critical Constraints

lmag (,2.) peak
displacement

0"6 0-1o

,9"4

0--_ _lo

ql0 q16

ql0 q16

qlo ql6

qlo ql6

q.o q16

q,o q,6

ql6

q16

ql6

qlo qt6

196.31(17)

200.27(1 I)

200.59( l 1)

204.16(12)

204.46( 1 I)

206.05(10)

0"8 0" 9 con4

(0,t a

roaa

_d 4

c,oa4

coaa

peak
control force

u, u2 u3 u.

u_ u3 u4

u_ ua u3 u.

uL _ u_ u.

ut u3 u4

ut u3 u_

uj tg u,

u3u.

u3u.

u3_

* :,number of independcnt control design variables
** " number of total analyses
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TABLE 23

Iteration History for Example 4: Antenna Structure, Linking on [H]

Control Design Variable Linking (ll)

Total Mass(kg)

Analysis

1
-)

3
4

6
7
8
9

10
11
12
13

Case 1 Case 2 Case 3 Case 4 Case 5

(I *) (2*) (3') (4') (5')

502.14 502.14 502.14 502.14 502.14
484.61 470.88 471.87 444.12 454.83
387,64 328.11 328.47 303.50 346.62
297.69 260.67 254.76 233.56 268.66
240,14 217.39 214.99 193.83 215.70
215,05 199.59 200.57 178.76 185.24
208,60 193.04 192,60 174,18 175,46
206.33 191.20 190.47 173.05 176.56
206,07 190.90 190.23 172.50 173.25
206,06 190.80 190.14 172.46 172.66
206.06 190.70 189.94 172.46 172.46

189.85 172.37
189.81 172.32

Analysis

l
2,

3
4
5
6
7
S
9

10
11
12
13

Case 6 Case 7 Case 8 Case 9 Case 10

(6*) (7*) (8') (9*) (10')

502,14
45Y14
299.54
228,72

502.14 502.14 502.14 502.14
449.81 450.11 453.15 469.10
293.56 294.62 307.14 350.45
217.54 218.41 228.31 268.09
184.73 180.21 188.59 215.51
176.29 174.64 175.95 181.84
173.07 174.70 173.41 173.50
172.28 174.38 172.68 171.19
171.93 173.93 171.10 171.02
171.80 171.27 170.84 170.96
171.73 170.97 170.70 170.92

170.84 170.65
170.81

187,80
175,65
173,27
172,41
172,29
172,17

* ' number of independent control desi_ variables
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TABLE 24

Final Cross Sectional Dimensions for Example 4:

Antenna Structure, Linking on [H], Control Design Variable Linking (II)

Final Cross Sectional Dimensions(cm)

Case

B
1 II

1"

13
2 II

T

B
3 tl

-r

B
4 1I

I3
5 II

"I"

B
6 tl

"I"

B
7 lI

"F

B
8 II

B
9 It

T

B
I0 lI

Element Element Element Element Element

1 2 3,4 5.6 7,8

25.00 b 25.00 b 19.62 25.00 b 15.51
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b
0.1899 0.1000" 0.10Off' 0.2816 0.1000"

25-00 b 25.00 b 19.78 25.00 b 24.94
25.00 b 25.00 b 25.00 b 23.05 22.23
0.1830 0.1326 0.100tY 0.2103 0.1001Y

25.00 b 25.00 b 20.03 25.00 b 22.86
25.00 b 25.00 b 25.00 b 23.37 21.94
0.1869 0.1413 0.1000 ° 0.2012 0.100(P

25.00 b 25.00 b 20.90 25.00 b 20.51
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b
0.100IT 0.100(P 0.1000 _ 0.2356 0.1000"

25.00 b 25.0& 18.85 25.00 b 23.70
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b
O. 1025 0.1036 O. IO01Y 0.2287 O. 1000"

25.00 b 25.00 b 18.72 25.00 b 2 !.03
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b

0.1000 ° 0. ! ! 07 0.100& 0.2330 0.10Off'

25.00 t' 25.00 t' 17.65 25.00 b 20.47
25.00 b 25.00 b 24.89 25.00 t' 25.00 b

O. 1000" O. 1165 O.1000 _ 0.23 !8 O.100ff'

25.00 b 25.00 b 14.95 25.00 b 23.42
25.00 b 25.00 b 23.00 25.00 b 25.00 b
0.1073 0.1244 0. 100(P 0.2203 0. I000"

25.00 b 25.00 b 14.62 25.00 b 22.12
25.00 b 25.00 b 22.36 25.00 b 25.00 b
0.1013 0.1319 0.1000 ° 0.2267 0.100(P

25.00 b 25.00 b 19.96 25.00 b 20.29
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b
0.1000" 0.1058 0.1000" 0.2296 0.1001Y

° indicates lower bound value b indicates upper bound value
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TABLE 25

Iteration History for Example4: Antenna Structure,
Linking on [14:] and [H_,-I,Control DesignVariable Linking (lI)

Total Mass(kg)

Analysis

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
t7
18
19
20

Case 11 Case 12 Case 13 Case 14 Case 15

(2*) (4') (6*) (8 °) (10')

502.14
485.24
383.18
302.66
241.31
216.56
208.12
206.07
205.78
204.22
204.19
204.16

502.14

482.76
343.98
276.53
225.43
200.56

189.44
187.41
186.31
185.54
185.21
185.13
185.09

502.14 502.14 502.14
462.89 420.35 470.72
339.86 288.81 326.51
260.17 229.95 247.00
222.33 196.72 207.82
202,26 I80.59 185.02
191.17 174.55 173.76
186.95 172.76 171.10
185.45 171.64 171.25
183.60 170.30 170.49
181.66 170.41 169.99
181.23 170.37 169.80
180.70 169,64
178.65 169.55

178.06
177.86
177.31
176.72
176.67
176.56

* ' number of indcpendcnt control design variables
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TABLE 25

Iteration History for Example4: Antenna Structure,
Linking on [tip] and [H_], Control DesignVariable Linking (II), Continued

Total Mass(kg)

.,\nalysis

1

3
4

6
7
S

10
II
12
13
14
15
16
17
18
19
20
21

Case 16 Case 17 Case 18 Case 19 Case 20

(i 2*) (14') (16') (18*) (20*)

502.14 502.14 502.14 502.14 502.14
475.80 474.66 474.47 466.40 434.64
301.89 304.10 304.66 304.00 287.18
228.23 230.32 231.61 226.62 224.61
188.16 197.86 197.41 185.11 183.32
175.46 178.77 178.20 174.03 172.69
174.21 172.28 172.25 172.93 171.31
173.71 171.81 171.09 172.39 169.42
172.95 169.76 170.49 172.02 166.81
171.19 171.33 170.21 171.80 166.79
170.91 170.02 169.72 170.04 166.22
170.69 169.07 169.16 169.67 165.66
169.68 167.59 167.78 169.37 165.61
169.49 166.91 167.26 169.17 166.50
168.38 166.23 167.00 168.92 165.30
167.40 I66.17 166.65 167.74 165.14
167.01 166.01 166.29 166.91 164.95
166,85 165.69 165.84 164.86
166.76 165.46 165.64 164.80

165.34 165.49
165.29 165.38

* • number of independent control design variables
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TABLE 26

Final Cross Sectional Dimensions for Example 4:

Linking on [Hp] and [H_], Control Design Variable Linking (II)

Final Cross Sectional Dimensions(era)

Case

B
11 II

T

12

t3

14

15

16

17

lS

19

2O

B
tl
T

B
II
T

B
It

B
II

B
II
"[-

B
II
F

B
I!

I3
I1
T

B
il
T

i

Element Element Element Element
1 2 3,4 5,6

Element
7,8

25.00 b 25.00 b 18.99 25.00 b 14.13
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b

O. 1777 O. 1149 O.1000 _ 0.2835 O. 1000 _

25.00 b 25.00 b 19.57 25.00 b 25.00 b

25.00 b 25.00 b 25.00 b 22.84 22.14
O. 1687 O. 1361 O. 10000 0.2032 O. 10000'

25.00 b 25.00 b 13.22 25.00 b 25.00 b
25.00 b 25.00 b 25.00 b 23.70 24.65
0.1239 0.1259 0.10000 0.2271 0.10000

25.00 b 25.00 b ,,.11 25.00 b 20.00
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b

0.10000 0.1021 0.1000 _ 0.2256 0.10000

25.00 b 25.00 b 19.45 25.00 b 21.32
25.00 b 25.00 b 24.70 25.00 b 25.00 b

0.10000 0.1051 0.1000 _ 0.2246 0.10000

25.00 b 25.00 b 13.02 25.00 b 24.32
25.00 b 25.00 b 24.12 24.93 25.00 b

0.10000 0.1341 0.1000 _ 0.2082 0.10000

25.00 b 25.00 b 13.64 25.00 b 24.70
25.00 b 25.00 b 24.06 25.00 b 25.00 b

0.1000 = 0.1289 0.100(P 0.2061 0.1000 °

25.00 b 25.00 b 15.33 25.00 b 25.00 b
25.00 b 25.00 b 23.14 25.00 b 25.00 b

0.10000 0.1213 0.10000 0.2047 0.1000 _

25.00 b 25.00 b 14.99 25.00 b 24.29
25.00 b 25.00 b 23.31 25.00 b 25.00 b
0.10000 0.1186 0.1000 _ 0.2084 0.1000"

25.00 b 25.00 b 14.91 25.00 b 24.62
25.00 b 25.00 u 22.93 25.00 b 25-00 b

0.10000 0.1205 0.10000 0.2054 0.10000

° indicates lower bound value b indicates upper bound value
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TABLE 27

Summary of Example 4: Antenna Structure, Cases1-20
Control DesignVariable Linking (II)

Case

Numbcr(*) (**)

I (1) 206.06(

2 12) 190.70(

Final Mass, kg

11)

ll)

Re(;'.) lmag().)

Critical Constraints

peak
displacement

3 (3)

4 (4)

5 (5)

6 (5)

7 (7)

S (S)

q (O)

10(10)

ii (2)

12 (4)

13 (6)

14 (s)

15(10)

16(12)

17(14)

18(16)

19(18)

20(20)

189.81(13)

172.46( 1 I)

172.32(13)

172.17(10)

171.73(11)

170.81(

170.77(

170.92(

13)

12)

11)

204.16(12)

185.09(13)

176.56(20)

170.37(12)

169.55(14")

166.76(19)

166.01(17)

165.29(21)

165.38(21)

164.S0(19)

c° 4 q_6

0-s °'9 co q coas ql6

0- a 0-_ o9 &) a4 (°as ql6

°"3 0"4 0-z &)a 4 ql6

°'3 0"4 0"8 t-Oa4 q16

0-s 60,:,'4 ql6

0-_ co q q16

0-_ O)J 4 03a 5 ql6

0-' 0"8 &),q &)a s ql6

&)a4 tll6

peak
control force

II,

z6

u,

u,

t¢

t6

123t¢

u3u4

u3 l¢,

u3t¢

coaa q_6 u3 t¢

0"8 0"9 COd4 C'0.tS ql6 lg4

0.4 0"s 0-9 6°a 4 _a 5 ql6

0-s &)a,_ ql6 Ua

0.4 O'S &)a4 ql6 I_

0-3 0"4 0-z ra)_h ¢-Oa's ql6 U1 t_

0-_ 0-_ &),q °°as q_6 us u4

0"4 r-Oda O')as qt6 Ui 113

0.a 0-7 as &)J4 _as q16 123

0-4 0-7 ('Od4 (Od 5 ql6 lit N3

* : number of independent control design variables
** : number of total analyses
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TABLE 28

Iteration History for Example5: Antenna Structure, Additional Constraints

Analysis

I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Total Mass(kg)

Case 1 Case 2

Control Effort Acceleration
Constraint Constraints

502.14
475.98
369.44
281.91
242.58
222.34
216.91
215.93
214.42
213.99
213.71

502.14
446.92
345.03
305.57
286.80
277.24
276.31
276.01
275.55
275.23
274.91
274.60
274.45
274.06
268.62
268.38
268.03
267.94
267.88

Case 3

Control Effort
& Acceleration

Constraints

502.14
476.33
375.87
309.06
286.28
276.98
273.76
273.24
272.95
272.72
271.76
270.65
270.50
270.44
270.38
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Case

B
II
T

B
II
T

B
H
T

TABLE 29

Final Cross Sectional Dimensions for Example 5:
Antenna Structure, Additional Constraints

Final Cross Sectional l)imensions(cm)

Element Element Element Element Element

! 2 3,4 5,6 7,8
i ]

25.00 b 25.00 b 16.94 25.00 b 18.55
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b
0.2476 0.1027 0.100(Y' 0.2452 0.100(P

25.00 b 25.00b 25.00 b 25.00 b 25.00 b
22.50 22.56 25.00 b 23.92 22.40

0.2935 0.2656 0.2432 0.1255 0.1552

25.00 b 25.00 b 25.00 b 25.00 b 25.00 b

25.00 b 22.15 25.00 b 24.11 22.41
0.2841 0.2793 0.2405 0. 1278 0.1532

indicates lower bound value b indicatcs upper bound value
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TABLE 30

Iteration History for Example 5: Antenna Structure

Re-solving 2 x 2 Riccati Equations and Truncation of Gain Matrix

Tot'..d Mass(kg)

An:.dysis

1
2
3
4
5
6
7
8
9

IO
I1
12
13
14
15

Case 4 Case 5

Re-solving 2 × 2 Truncation
Riccati Equations of Gain Matrix

502.14 502.14
469.10 469.10
366.71 350.41
281.45 268.57
220.83 214.43
190.46 181.03
177.59 172.36
174.16 170.64
174.02 171.37
175.31 171.25
175.05 170.89
174.96 170.85
174.79 170.72
174.77 170.71
174.74 170.69
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TABLE 31

Final CrossSectionalDimensionsfor Example 5:
Re-solving2 x 2 Riccati Equations and Truncation of Gain Matrix

i

Case

i

B
4 t!

B
5 II

l:inal Cross Sectional Dimensions(cm)

Element Element Element Element Element

1 2 3,4 5,6 7,8

25.00 b 25.00 b 16.58 25.00 b 23.67
25.00 b 25.00 b 24.63 25.00 b 25.00 b

O. 1025 O. 1000_ O, 1000 _ 0.2446 O. 1000 _

25.00 b 25.00 b 18.71 25.00 b 23.11
25.00 b 25.00 b 24.33 25.00 b 25.00 b

0.1000 ° 0.100lY' 0.1000 ° 0.2296 0.100lY'

indicates lower bound value b indicates upper bound value
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Mode
Number

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

TABLE 32

Final Closed-Loop Eigenvalues for Example 5:
Re-solving 2 × 2 Riccati Equations and Truncation of Gain Matrix

,_.,= ,_,+ icon,(_,, %)

Case 10 Case 4 Case 5

of Example 4 Re-soh'ing 2 x 2 Truncation
Riccati Equations of Gain Matrix

i

-2.73 + i 1.61 -2.52 + j _.,,4 -2.77 + j 1.56

-1.86 + i 4.97 -1.54+ i 5.01 -1.20 + i 5.04

-.683 + j 23.7 -.504 + j 23.7 -.739 + j 23.6

-.519 + j 50.1 -.499 + j 50.1 -.528 4- j 50.1

-.866 + j 64.7 -.505 ___i 63.1 -.906 +_ j 63.2

-1.08 4- j 103. -.846_+ j 102. -1.34 + j 102.

-.')33 + i 184. -.647 + i ]g4. -.507 4- j 184.

-.623 + i 241. -.501 + j 238. -.514 4- j 238.

-2.50 +_ j 320. -.938 + j 319. -2.98 + j 320.

-2.25 _+ i 324. - 1.40 _+ i 325. - 1.72 4- i 324.

.977 _+ j 428. -.353 × 10-2 + J 428. .110 × 10-3 + j 427.

.076 + i 619. .127 x 10 -_ _+_j 617. -.462 x 10-6 4- j 618.

• ") "2,183 + J 637. -,.,,7 x 10 -2 + j 627. -.387 × 10-a _+ i 626.

.203 + j 681. -.425 x 10 -2 + j 684. .395 × 10-4 _+ j 681.

•121_+j 1015. -.313x 10 s+j995. .438× 10-'+j 1000.

-.121 +_ j 1128. .131 x 10 2+ j 1124. -.670 x 10-6 + j ll21.

•504 _+ j 1268. .245 x l0 -s + i 1294. .287 x 10-6 + J 1286.

.339 + J 1375. -.378 x 10-2 + j 1380. .971 x 10-" + j 1378.
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TABLE 33

Iteration Historv for Example 5: Antenna Structure

Variable Mass Design Elements

Analysis

1

3
4
5
6
7
8

10
11
12

Total Mass(kg)

Case 6

c,=4kg/8.5 N

Case 7

c, = 8kg/8.5 N

Case 8

q = 2 kg/8.5 N

502.14
476.98
354.56
270.96
213.92
184.34
173.01
171.14
170.62
170.34
17023
170,17

502.14
476.82
364.94
293.55
233.84
193.69
182.61
183.93
181.46
180.47
180.39
180,37

502.14
465.89
336.41
259.58
210.89
178.03
168.24
167.14
166.37
165.27
165.13
165.03
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TABLE 34

Final Cross Sectional Dimensions for Example 5: Antenna Structure

Variable Mass Design Elements

Final Cross Sectional l)imensions(cm)

Case

B
6 tt

T

B
7 i[

B
8 tt

T

Element lZlement Hement Element F.lement
1 2 3,4 5,6 7,8

25.00 b 25.00 b 18.26 25.00 b 22.80
25.00 b 25.00 b 25.00 b 25.00 b 25.00 b

0.100(Y 0.1000 _ 0.1000 _ 0.2330 0.100(Y

25.00 t' 25.00 b 25.00 t' 25.00 b 25.00 b
25.00 t' 25.00 b 25.00 b 25.00 t' 25.00 b

0.1000 _ 0.1580 0. 1000" 0.1728 0.1000"

25.00 b 25.00 b 13.98 25.00 b 21.38
25.00 b 25.00 b 22.28 25.00 b 25.00 b

0.1191 0.100tT 0.100{Y 0.2382 0.100if'

° indicates lower bound value b indicates upper bound value

TABLE 35

Final Actuator Masses for Example 5: Antenna Structure

Variable Mass Design Elements

Actuator Mass(kg)

Actuator

Number

I

2and4

3

Case 6 Case 7 Case 8

c,=4kg/8.5N c,=8kg/8.5 N cl=2kg/8.5X

.i

2.700 4.641 1.489

4.006 7.958 2.001

3.920 7.773 1.974
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TABLE 36

Summary of Example 5: Antenna Structure, Cases 1-8
Additional Problems

Case

N umber

Case I 0
of

t!xamplc 4

1

3

4

5

(,

7

8

Final Mass, kg
(,,)

170.92(11)

213.71(11)

267.88(19)

270.38(15)

17474(15)

170.69(15)

170.17(12)

180.37(12)

165.03(12)

Re ().) Imag (2)

Critical Constraints

pcak peak
displacement control force

,r,1

t'-°d4 q_6 ILa _t_

additional

NA

** ' number of total analyses
N.\ " not applicable
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Mode
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

t6

17

18

19

2O

TABLE 37

Initial Complex Eigenvalues, Grillage Structure

Open-Loop
Closed-Loop

-.874 i i 2.31 (35.4)

-.431 + i 7.06 (6.09)

-1.87 + i 17.3 (10.8)

-.762 +_ j 17.6 (4.33)

-1.36 _ j 27.2 (5.00)

-.878 ± ] 39.9 (2.20)

-2.00 +_ i 40.1 (4.97)

-3.76 +_ i 49.2 (7.64)

-1.90 + i 60.1 (3.15)

-2.01 _+ j 69.0 (2.92)

-2.58 +_ i 74.0 (3.49)

-.840 +_ i 75.6(1.11)

-2.o3i i ,}5.S(2.11)

-1.39 + i 103. (i.35)

-2.26 + i 106. (2.13)

-1.41 +j 112.(1.26)

-2.1)4 + j 119. (1.72)

-1.66+ j 128. (1.29)

-2.81 + i 142. (1.98)

-1.65 i i 145. (1.14)
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TABLE 38

Independent Control Design Variables, Grillage Structure

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(TDV's

Number

)t"lndep.
(7l)V's

3{I _ "'" --'_ 3[25 311, _1, X2, 3{I, "'" , 3{4, _1, "'" , 2_9,

_2 _ "'" _ 3{25 3{3 _ "" _ _25 3{5 _ "'" _ _25 3{10 _ "'" _ _{25

1 2 3 5 10 20

TABLE 39

Final Structural Variables, Grillage Structure

Depths (era)

l)csigm
Variable
Number

Case I Case 2 Case 3 Case 4 Case 5 Case 6

1 0.2849 0.2768 0.2510 0.2392 0.2557 0.2466

2 0.1698 0.1806 0.1936 0.1985 0.1191 0.1125

3 0.100_ 0.100_ 0.100(P 0.100_ 0.1000" 0.100(P

4 0.1953 0.1973 0.1769 0.1788 0.1908 0.1560

5 0.1502 0.1479 0.1429 0.1373 0.100_ 0.100_

6 0.3656 0.3626 0.3670 0.3691 0.3701 0.4128

7 0.2299 0.2180 0.2221 0.2222 0.1622 0.1137

8 0.4724 0.5021 0.4951 0.4719 0.58_0 0.5573

° indicates lower bound value
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TABLE 40

Iteration Histories,Grillage Structure

Total Mass (lb" sec2/in)

Analysis Case 1 Case 2 Case 3 Case 4 Ca_ 5 Case 6

(1 *) (2*) (3') (5') (!0') (20')

1
2
3
4

6
7
8
9

10
11
12
13
14
15
16
17
IS
1_
20
21
•.) .-)

23
24
25
26
27

0.1294 0.1294
0.1448 0.1433
0.1332 0.1327
0.1272 0.1295
0.1231 0.1256
0.1211 0.1247
0.1211 0.1200
0.1198 0.1189
0.1192 0.1189
0.1192 0.1188
0.1194
0.1191
0.1191

0.1294
0.1440
0.1369
0.1317
0.1238
0.1206
0.1185
0.1172
0.1166
0.1172
0.1173
0.1172
0.1177
0.1173
0.1168
0.1170
0.1169
0.1169

0.1294
0.1442
0.1353
0.1258
0.1222
0.1212
0.1197
0.1178
0.1170
0.1174
0.1173
0.1171
0.1162
0.1162
0.1162
011159
0.1158
0.1159
0.1160
0.1158
0.1157
0.1157

0.1294
0.1442
0.1352
0.1261
0.1257
0.1215
0.1182
0.1170
0.1145
0.1136
0.1126
0.1111
0.1107
0.1111
0.1099
0.1098
0.1098
0.t093
0.1091
0.1091
0.1093
0.1083
0.1080
0.1082
0.1083
0.1082
0.1083

0.1294
0.1468
0.1366
0.1298
0.1223
0.1168
0.1163
0.1139
0.1114
0.1103
0,1103
0.1089
0.1088
0.1080
0.1065
0.1053
0.1047
0.1044
0.1039
0.1036
0.1042
0.1041
0.1040
0.1039

* • number of independent control design variables
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Mode
'_umber

TABLE 41

Final Closed-Loop Eigenvalues, Grillage Structure

L = ,*,+j,_, (L, %)

Case I Case 2

1 -I.58 + i 4.85 (30.9) -1.62 + J 5.03 (30.7)

2 -.438 + i 9.76 (4.49) -.321 _+ j 9.93 (3.23)

3 _,._6 + j 20.4 (11.0) 1.75 i j 20.4 (8.53)

4 -1.53 +_ j 24.7 (6.17) -i.08 + j 25.4 (4.25)

5 -2.53 +_ j 30.5 (8.26) -2,08 + ] 31.0 (6.70)

6 -.415 +_ j 38.9 (1.06) -.404 + j 39.6 (1.02')

7 -_,.4 + i 40.1 (5.59) -1.96 + j 39.9 (4.91)

-1.36 + i 50.7 (2.68) -I.87 +_ j 51.5 (3.63)

,_ -15.4__+ i 51.7 (28.6) -10.9 +_i 53.2(20.1)

10 -2.49 + i 55.l (4.51) -1.98 + i 54.9 (3.60)

1t -1.14+i62.4(1.83) -.674!i63.6(1.06)

12 -._,34 + j 63.3 (1.00") -.638 i i 63.9 (1.00')

13 -3.38 _+ j 74.1 (4553 -2.56 +_i 75,0 (3.40)

14 -.944 + i 93.1 (t.Ot*) --934 + i 91'7 (l02.)

15 -17.5±i97.6(t7-7) -ll.8ii 100.(11.7)

•_ , _ 16) -2.88 + j lOt. (2.85)16 -_..6 + i 104. (2.

17 -3.28 + j 105. (3.12) -4.61 +__j [05. (4.40)

18 -2.67 +_ j 106. (2.5l) -I.08 +_ j 105. (1.03')

let -1.21 + i 120. (1.01*) -I.24 +_ j 121. (1.03*)

20 -1.43 _+j 142. (1.01') -1.49 4- j 140. (1.06)

Case 3

-1.89 i J 5.14 (34.4)

-.103 i j 9.90 (I.04)

-2.36 + i 20.0 (11.7)

-2. lom i 24.7 (8.50)

-2.58 + i 29.9 (8.58)

-.423 + i 38.7 (1.09)

-2.62 + i 39.2 (6,66)

- i5.5 +_i 47.9 (30.7)

-2.44 + j 51.2 (4.75)

-3.14 + i 52.3 (5.99)

-.995 + i 62.3 (l.60)

-,625 ± i 62.3 (1.00')

-2.54 + j 74.0 (3.42)

-.975 _+ j 88.5 (i.10)

-20.7 + i 95.4 (21.2)

-3.96 ± i 99.3 (3.99)

-2.13 + i 99.9 (2.13)

-1.04 + j 101. (!.03')

-1.20 + j 119. (!.01')

-1.36+ i 135. (1.00')

* indicate critical damping ratio constraints (0.999 < _, < 1.03)
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TABLE 41

Final Closed-Loop Eigenvalues,Grillage Structure, Continued

Mode]
.Number'

1

-)

3

4

5

6

7

8

9

10

I1

12

13

14

15

16

17

19

20

;.,= ,r, + j_, (L, %)

Case 4 Case 5 Case 6

-2.08 + J 5.19 (37.1)

-.100 + i 9.76 (1.02')

- 10.4 + } 19.9 (46.2)

-t,44 + i 22.0 (6.55)

-2.71 _%i 30.0 (9.01)

-.384±j38.1 (1.01')

-2.01 +_i 38.s (5.19)

-13.7 + i 48.3 (27.2)

-2.24 + i 50.5 (4.42)

-3.07 _+ j 51,7 (5.92)

-.627 + j 61,_ (1.02')

-.948 -_%+i 62.7 (l.51)

-2.23 ± i 72.7 (3.06)

-ss_ _+i 86.6 (1.02')

-19.4 + j 96.7 (19.7)

-2.12 +_ j 97.2 (2.19)

-3.81 k i 98.4 (3.87)

-.986 __+i 98.7 (1.00')

-1.19 _+ j 117. (I.01')

- 1.40 ± i 135. (1.04)

-2.22 i i 5.92 (35.1) -1.85 + i 6.56 (27.l)

-.115+i10.5(1.09) -.112+i 10.7(1.05)

-1.16 + i 22.2 (5.21) -.209 + j 20.3 (1.03')

-4.02 ± i 22.6 (17.5) -6.55 + J 22.2 (28.3)

- 1.92 + i 28.6 (6.70) -.724 + j 26.2 (2.77)

-.397 + i 37.0 (1.07) -1|.4 + j 35.1 (30.9)

-1.27+ i 38.6(3.30) -.605+ ] 35.4(1.71)

-12.0 +_ i 45.8 (25.4) -.397 + i 37.3 (1.07)

_.534 + i 48.3 (1.10) -.666 + i 44.3 (1.50)

-.615 ± i 48.7 (1.26) -.479 + J 47.9 (1.00")

-.525 ± i 52.2 (I.00') -.496 +_ i 48.4 (l.02')

-.648 ± J 56.1 (1.15) -.539 ± i 52.8 (1.02')

-3.55 £ i 65.0 (5.45) -1.93 + i 54.6 (3.54)

-.749 + i 72.7 (1.03') -3.35 £ ] 66.1 (5.06)

-2.08 + i 77.5 (2.68) -37.0 + j 66.3 (48.8)

-2.63 + i 79.0 (3.32) -.742 ± i 71.9 ([.03*)

-12.6 + j 85.6 (14.5) -7.59 + j 75.7 (9.97)

-1.62 + i 99.0 (1.63)

-2.36 ± i 110. (2.15)

-1.33 + i 133. (1.00')

-1.04 ± j 90.5 (1.15)

-1.35 ± i 95.1 (1.42)

-1.34 ± j 131. (I.02')

* indicate critical damping ratio constraints (0.999 _< _, _< 1.03)
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Figure 1" Three Dimensional Frame Element and Its Cross Sections
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Figure 2: Example 1 - Cantilever Beam
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Figure 3: Iteration History for Example 1 - Cantilever Beam,
Cases 1-5, Control Design Variable Linking (I)
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Figure 4: Final Cross Sectional Dimensions for Example 1 - Cantilever Beam,
Cases 1-5, Control Design Variable Linking (I)
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Figure 5: Iteration History for Example 1 - Cantilever Beam,
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Figure 6: Final Cross Sectional Dimensions for Example I - Cantilever Beam,
Cases 6-9, Different Initial Feedback Gains
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Figure 8: Iteration Histories for Example 2 - ACOSS FOUR, Cases I and 2

((oji > 1.341, _o_ 2_ 1.6, _t > 0.15 )
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Figure 9: Iteration Histories for Example 2 - ACOSS FOUR, Cases 3 and 4
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Figure 10: Final Truss Areas for Example 2 - ACOSS FOUR
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Figure II" Example 3 - Antenna Structure
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Figure 13: Iteration History ['or Example 3 - Antenna Structure,
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149



FinalDimensions
B (cm)

M II
Nm.

20-- N=.
N I|
["ill
I,_1!

15- _,,=]l
MII
NI]I

1 0- 1411

m,,i II
1,4 II

5 - 1'4111

_1|

)41,11
NI-II I
NI-BI
INLI I

I I I I I

2 3 4 5, 8 7 8 D 10

H (cm)

o- --_"-'[ I [ I I I I I I

1 2 3 4 5 • 7 El g 10

T (cm)

0 30

0.20-

0.I0-

0.00
| I I I | 1 I I I

1 2 .3 4. S 6 "7 E! g

(144) (72) (3'*) (1 o) (s) (4) (4) (2) (1)

I

10

(1)

CaseNumber(No.of CDI 'sJ

Figure 14: Final Structural Dimensions for Example 3 - Antenna Structure,
Cases 1-10, Control Design Variable Linking (I)
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Figure 15: Number of Independent CDV vs. Final Mass - Example 3,

Antenna Structure, Cases 1-10, Control Design Variable Linking (I)
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( )* : Number of Independent Control Design Variables
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Figure 17: Final Structural Dimensions for Example 4 - Antenna Structure,

Cases 1-10, Control Design Variable Linking (II)
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Figure 18: Iteration History for Example 4 - Antenna Structure,
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Figure 19: Final Structural Dimensions for Example 4 - Antenna Structure,
Cases 10-20, Control Design Variable Linking (II)
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Figure 20: Number of Independent CDV vs. Final Mass - Example 4,
Antenna Structure, Control Design Variable Linking (II)
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Figure 21: Iteration History for Example 5 - Antenna Structure,
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Figure 22: Iteration History for Example 5 - Antenna Structure,
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Figure 23: Iteration History for Example 5 - Antenna Structure,
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Figure 25: Example 6 - Grillage Structure
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Figure 26: Iteration History for Example 6 - Grillage Structure,
Cases 1-6, Control Design Variable Linking (II)
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Figure 27: Final Structural Dimensions for Example 6 - Grillage Structure,

Cases I-6, Control Design Variable Linking (I1)
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Figure 28: Number of Independent CDV vs. Final Mass - Example 6,
Grillage Structure, Cases 1-6, Control Design Variable Linking (II)
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